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Summary

Modulation techniques for measuring changes in optical
birefringence, such as the rotating-polariser method (Wood
& Glazer, 1980, J. Appl. Crystallogr. 13, 217), allow one to
determine jsin dj, d ¼ 2pLDn/l, Dn ¼ double refraction,
L ¼ light path and l¼ wavelength. However, they generally
suffer from not providing absolute values of the optical
retardance or are limited to relatively low retardance
values. In addition, knowledge of the absolute phase is
required when establishing the correct values of optical
orientation information. In this paper, it is shown how the
phase d, and thus optical retardance, can be extracted from
combining measurements of jsin dj at different wavelengths.
The new approach works on each single point of a 2-D
picture without the need to correlate with neighbouring
points. There is virtually no limit to the retardance, and the
computational efforts are small compared with other
methods (e.g. Ajovalasit et al. 1998, J. Strain Analysis 33,
75). When used with imaging techniques, such as the
rotating polariser method of Glazer, Lewis & Kaminsky
1996 (Proc. R. Soc. London Series A452, 2751) this process
has the potential to identify automatically optically aniso-
tropic substances under the microscope. The algorithm
derived in this paper is valid not only for birefringence
studies, but can be applied to all studies of interfering light
waves.

1. Introduction

It is well known that polarized light is commonly used to
determine the double refraction of an optically anisotropic
material such as a crystal, organic tissues, strained glasses,
polymers, etc. Double refraction, also known as plano-
birefringence (Shurcliff, 1962), is given by Dn ¼ (n2 – n1),

where n1 and n2 are the refractive indices corresponding to
the cross-section of the optical indicatrix seen down the
viewing direction (Fig. 1a) (Hartshorne & Stuart, 1964).
Traditionally, this has been measured using a variety of
crystal compensator techniques. However, in recent times,
the availability of imaging systems and computers has led to
many different attempts to derive the double refraction
automatically with high resolution at different locations
within an image of the specimen (e.g. Ajovalasit et al.,
1998).

Automated optical measurement techniques are impor-
tant in many different research fields, e.g. the study of phase
transitions, measurements of photoelasticity, and in biology.
In the study of phase transitions it is necessary to measure
accurately how the optical retardance (or retardation)
changes with temperature and to observe the formation of
domain structure. In photoelasticity experiments, the
measurement of strain-induced double refraction in, for
example, constructional materials, is used to assess the
location and magnitude of applied stresses. Determination
of the double refraction in biological samples is of value for
structural studies (Whittaker, 1995).

The direct measurement of double refraction in an image
of the specimen involves accurate measurements of
intensity. Calculation of the double refraction from this
intensity then involves the evaluation of trigonometric
functions with phase d as an argument.

d ¼ Lðn2 ¹ n1Þk ð1Þ

where k ¼ 2p/l is the length of the wave vector of the light,
L is the sample thickness and d is the phase difference
between the two eigenmodes of the light. The product of the
light path, L, and double refraction (n2 – n1), is the retard-
ance, G. The number of multiples of 2p in the arguments of
these trigonometric functions, which we call the order (the
number of multiples of p is in the field of photoelastics
known as the fringe-order), cannot be derived from the
trigonometric functions alone, as these are periodic, and so
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this introduces an ambiguity. Thus, in general, the double
refraction cannot be accessed directly by image analysis,
and additional measurements are necessary to solve the
order ambiguity.

As a first step, the value of the trigonometric functions is
determined and the eigenmode directions of the refractive
indices n1 and n2 are separated out by deriving the
extinction angle J (Fig. 1b) between the modes and a
reference system. The order ambiguity is usually removed in
a second step. A number of methods associated with step
one are given by Ajovalasit et al. (1998). Step two can also
be carried out in various ways. It is known from basic
polarization microscopy that information about the order is
contained in the colours which are seen when a specimen is
viewed such that J ¼ 458 between crossed polars in white
light (e.g. Hartshorne & Stuart, 1964). The so-called
Michel–Levi chart maps the colours against the retardance,
and for a known thickness, the double refraction can be
read out. This can often be used as a fingerprint for different

rock-minerals. However, the colours vary between different
materials and depend on the spectral composition of the
light source. One normally has to rely on ordinary
compensator methods to find the absolute value of the
retardance, in which case it is necessary to rotate the
sample in order to adjust the extinction angle for each
region of the sample. This is clearly not suitable for an
imaging system in which there may be a multitude of
different regions in the field of view with different optical
orientations.

A computerized measurement could quantify the colour-
equivalent of the Michel–Levi chart, using any of the
methods of step one, and compare it with a calibration in
the same material. This approach is called the RGB-method,
as it involves the red, green and blue values of a video camera
with which the experiment is made (Ajovalasit et al., 1995).

Another approach involves the measurement of the
spectral dependence of a small sample region, employing a
monochromator to allow for several individual measure-
ments with respect to wavelength. This method is called
spectral contents analysis (SCA) (Redner, 1985).

The order is accessed from the change in lateral positions
of minimum intensity for two different wavelengths in a
crossed-polars experiment, where the intensity of the
transmitted light when J ¼ 458 is given by

I ¼ I0 sin2ðd=2Þ ð2Þ

Here I0 is the initial light intensity. This requires a 2-D
image of the sample measured at least twice, one for each
wavelength. The images are compared laterally to enumer-
ate the fringes. Three wavelengths have been used to
produce absolute retardance and extinction, provided that
there exists a region with zero retardance within the sample
where the images for different wavelengths are coincident
(Buckberry & Towers, 1996).

Determining the absolute order is particularly important
when working on systems undergoing changes because, for
instance, an increase in jsin dj, which is what is generally
measured, does not, in general, correlate with an increase
in d. Furthermore, knowledge of the order makes it possible
to consistently assign the extinction angle J to the slow axis
of the indicatrix, which is a shortcoming of all automated
methods.

The aim of the present paper is to show how to remove
the ambiguity when measuring the retardance G on a single
point, using the so-called rotating polariser (RP) method in
which measurements of jsin dj can be made with ease, and
employing only a maximum of three close wavelengths
when the intrinsic optical dispersion of the retardance is
small. We shall show that, with a small amount of compu-
tational effort, quite large d-values in a variety of samples
can be calculated with high accuracy.

The approach used here has analogy with phase stepping
interferometry (see Greivenkamp & Bruning, 1992).

Fig. 1. The indicatrix. (a) A general indicatrix with the three major
refractive indices na, nb and nx. The incoming light, described by
the wave vector k, will experience a double refraction (n2 – n1),
where n1 and n2 are expressed in the lengths of the semi-axes of
the ellipsoidal cross-section of the indicatrix perpendicular to k.
(b) The definition of extinction angle J used in the text. Polariza-
tion of light parallel to the larger n2 corresponds to slower propa-
gation of the wave.
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2. Theory

2.1. Methods to measure the retardance and extinction angle

For a transparent birefringent sample which has been aligned
between crossed polarisers the extinction angle J normally
refers to a reference system, usually measured anticlockwise
between the horizontal axis and one of the eigenmode
directions (see below and Fig. 1b). By varying either the
sample orientation or the angles of the polarisers with respect
to each other, one can derive the optical retardance (see for
example Moxon & Renshaw, 1990). Similarly, a sample
could be placed between a set of two circular polarisers
made from a combination of a pair of crossed polarisers and
a pair of crossed quarter-wave plates at 458 to the polarisers.

A different approach is to place the sample after a circular
polariser, where the extinction does not matter and thus, the
sample does not need to be aligned with the polarisers. The
optical properties can be analysed with an ordinary polariser,
which is then rotated. If the polariser is rotated continuously,
the intensity of the light varies periodically. The phase shift of
the signal contains the information on the extinction angle
J. The amplitude at an angular frequency 2q, with which
the polariser is rotating, is related to the retardance
according to the following expression (t is the time):

I ¼
I0

2
½1 þ sin 2ðqt ¹ JÞ sin dÿ ð3Þ

It is possible then to extract the term jsin dj from this intensity
by Fourier analysis on 2q using a lock-in amplifier and
monochromatic light (RP-method, Wood & Glazer, 1980). This
optical train can be classified as a semicircular polariscope.
Equation (3) can also be evaluated through numerical Fourier
analysis. To do this it is convenient to replace the continuous
motion of the polariser by a stepper motor-driven polarization.
In our system we have inverted the light path1 (Fig. 2). This set-
up resembles the phase-stepping method of Ajovalasit et al.
(1998), although the optical train is different.

When rotating the polariser through a total of amax ¼ 1808

in N steps of ai ¼amax/N, the intensity at the detector is still
described by Eq. (3), which can be recast in the form below:

Ii ¼ a0 þ a1 sin 2ai þ a2 cos 2ai;

a0 ¼ 1
2 I0; a1 ¼ 1

2 I0 sin d cos 2J;

a2 ¼ ¹ 1
2 I0 sin d sin 2J ð4Þ

The parameters ai are found from

a0 ¼
XN

i ¼ 1

1
N

Ii; a1 ¼
XN

i ¼ 1

2
N

Ii sin ai; a2 ¼
XN

i ¼ 1

2
N

Ii cos ai ð5Þ

which is different from expressions used in ordinary phase-
stepping methods (see for example Hecker & Morche, 1986).

The RP method has recently been developed further to
produce false-colour microscope images of a sample with
respect to three different features of the sample: the
transmission 2I/I0, the sine (between 0 and 1) of the phase
factor d, i.e. jsin dj, and the extinction angle J (Glazer et al.,
1996). J is calculated as J ¼ 1/2 arccos (a1/

√
a2

1 + a2
2).

It is of vital interest to consider Eq. (3) in more detail, by
extending it to the case of a nonperfect quarter-wave plate
and allowing for a varying initial intensity when the
polariser is rotated. The resulting intensity can be calculated
using Jones-matrices (see for example Hecht & Zajac, 1974).
The initial amplitude E0 changes by a percentage P with
rotation angle a and offset a0 according to

E0 ¼ E 0
0ð1 ¹ Pcosða ¹ a0ÞÞ ð6Þ

where E0
0 is the amplitude of the light source. P is found by

removing all the polarizing optical components with the
exception of the rotating polariser itself. The experimental
value of P is then used to correct all following intensity
readings, which are divided by (1 – P cos(a – a0)). The
extinction angle of the sample is denoted by J and the
quarter-wave plate (Fig. 2), mounted at 458 to the analyser,
deviates from d ¼p/2 by a small amount, x:

Ex

Ey

� �
¼

1
2

1 1

1 1

� �
1 0

0 i ¹ x

� �
cos J sin J

¹ sin J cos J

� �

×
exp id

2 0

0 exp ¹ id
2

" #
cos J ¹ sin J

sin J cos J

� �

×
cos a ¹ sin a

sin a sin a

� �
E0

0

� �
ð7Þ
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1For most of the materials to be investigated it does not matter if the path of the

light is inverted (with the exception of magnetic samples). Thus, in our set-up we

place the rotating polariser below the sample.

Fig. 2. The optical train as implemented on a standard polarizing
microscope. The additional components of the rotating polariser
method are highlighted in red.
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The first vector at the far right of Eq. (7) represents the
initial light amplitude. The matrices, from right to left,
represent: the rotating polariser, the rotation of the sample
by the extinction angle, the retardance of the sample, the
transposed extinction-rotation, the quarter-wave plate, and
the analyser at 458. The final intensity is obtained from the
light amplitude E ¼ (Ex, Ey) as I ¼ E·E* , where E* is the
complex conjugate of the amplitude E. The final result was
obtained using the mathematical program MAPLE (Waterloo
Maple Inc., 1996, website: http://www.maplesoft.com).
With I0 ¼ E0

2 and neglecting terms in x2 we find:

2I
I0

>1 þ sin 2ða ¹ JÞ cos d

þ x sin 2ða þ 2JÞ sin2 d

2
¹ sin 2a cos2 d

2

� �
ð8Þ

If the sample is removed (d ¼ 0), the effect of the quarter-
wave plate is given by the last term, xsin(2a) by which the
light intensity is modulated. In practice, we have found
typical values for x (after adjusting accurately to 458

towards the analyser) to be within 2% of the total intensity.
The effect due to P is larger and ranges up to 10% in an
ordinary microscope. The parameters a1 and a2 in Eq. (4)

are changed to:

a1 ¼
1
2

I0 sin d cos 2J þ x sin2 d

2
cos 4J þ cos2 d

2

� �� �
a2 ¼

1
2

I0 ¹ sin d sin 2J þ x sin2 d

2
sin 4J

� �
ð9Þ

To achieve the highest accuracy, the necessary x-correction
in Eq. (9) is carried out iteratively, using the parameters
of Eq. (4) as starting values. However, this is only
necessary when using optical components of poor quality.
In the measurements presented here, using a high-quality
quarter-wave plate and polarisers, the x-correction would
not improve the results significantly.

Although the rotating-polariser plus CCD-imaging
approach has already been used for a large variety of
scientific problems and has proved to be very accurate, the
magnitude of the retardance, as mentioned above, is only
found as jsin dj, and this means that the order is not
obtained. To go further, one needs to find the absolute value
of the phase d. This can be done in principle by repeating the
measurement with two or more close wavelengths.

In the following section it is shown how the absolute
retardance is found without any further adjustment of the

Table 1. The assignment of the slope, Q, S1, and S2 as used in the programme to calculate d. yj symbolizes the jsin dj measured at wavelength
j. h is a factor used to distinguish whether the two ds compared belong to the same half-order m. The table shows which yj should be used for
the d0,1 and d0,2 calculations and the value of the associated slope, Q, S1, and S2. The results originate from an analysis of possible relation-
ships between the measured extinction angle Jj and yj, where it is assumed that l1 <l 2 <l 3 (i.e. k1 > k2 > k3). This approach is not applicable
for Q>1. If it is anticipated that Q will exceed 1 then a set of wavelengths closer together should be chosen. Where the slope is not shown, it
has not been used in the calculations. In the algorithm used, the orientations are compared first; thereafter the magnitudes of jsin dj are
compared. The procedure is found to work well when we take the value of h to be 0.95.

y1 # y2 $ y3 y1 > y3 & not y1 # y2 $ y3 y1 < y3 & not y1 # y2 $ y3

J1 ¼J2 ¼ J3 (y2, y3), S1 ¼ 1, S2 ¼ 1, Q ¼ 0 (y1, y2), S1 ¼ –1, S2 ¼ –1, Q ¼ 0
(y1, y3), S1 ¼ –1, S2 ¼ 1, Q ¼ 1

Slope >0 Slope<0

J1 ¼J2 y2 < hy1 y2 $ hy1

J3 ¼J1 6 90
(y2, y3), S1 ¼ 1, S2 ¼ ¹1, Q ¼ 0 (y1, y3), S1 ¼¹1, S2 ¼ ¹1, Q ¼ 1

Slope>0 Slope>0

J1 ¼J2 6 90 y2 < hy3 y2 $ hy3

J2 ¼J3

(y1, y2), S1 ¼ 1, S2 ¼ ¹1, Q ¼ 0 (y1, y3), S1 ¼ 1, S2 ¼ 1, Q ¼ 1

Slope<0 Slope<0

J2 ¼J1 6 90
J1 ¼J3 (y1, y3), S1 ¼ 1, S2 ¼ –1, Q ¼ 1
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sample. The improved RP method with shifted wavelength
(SWRP-method) will then be applied to a variety of
specimens to demonstrate its applicability.

2.2. Method to remove the ambiguity in the retardance

The ambiguity in determining the absolute phase (from
measured jsin dj values, as derived with the RP method, is
that mp, m an integer, can be added to the relative phase d0

without change of jsin dj, where 2m is the order of the
phase.

d ¼ mp 6 d0; d0 ¼ sin¹1ðj sin djÞ: ð10Þ

The ambiguity may be solved from the derivative of the
relative phase d0 with respect to the wavelength, which is
expressed more conveniently using the wave-vector length,
k ¼ 2p/l:

∂d0

∂k
¼ 6

∂
∂k

ðkLðn2 ¹ n1Þ ¹ mpÞ

¼ 6L ðn2 ¹ n1Þ þ k
∂
∂k

ðn2 ¹ n1Þ

� �
: ð11Þ

The second term in Eq. (11) describes the dispersion of the
double refraction. If we assume that the effect of dispersion
is small and can be neglected, recasting of Eq. (11) leads to:

d1 ¼ 6k1
∂d0

∂k
¼ k1 lim

k2→k1

d0;2 ¹ d0;1

k2 ¹ k1

� �
ð12Þ

d0,1 and d0,2 are the values of the relative retardance
measured at two wavelengths 1 and 2 as defined in Eq. (10),
and d1 is the calculated phase at the first chosen wavelength
(the second chosen wavelength could just as well have been
used for the d calculations). When using measured data to
calculate the absolute phase d1 we cannot simply use Eq.
(12) because d0,1 and d0,2 (measured for different k1 and k2)
might not belong to the same order of p/2. To take this
possibility into account we must recast Eq. (12):

d1 ¼
k1

k2 ¹ k1
ðS2d0;2 ¹ S1d0;1 ¹ QpÞ ð13Þ

Here S1 and S2 can take the values 1 and ¹1, depending on
whether the ambiguous sign in Eq. (10) is positive or
negative for d0,1 and d0,2. Q is the difference between the
values of m of d0,1 and d0,2. Using an additional third
wavelength we are generally able to find a pair of d0s to
which we can assign appropriate S1, S2 and Q to calculate
their difference correctly, as can be seen in Table 1. Note
that the scheme in this table is applicable only when the
change in wavelength results in a change in m less than 2
(although Eq. (13) is generally true). Thus, in order to use
Table 1 one has to choose wavelengths sufficiently close to
avoid a larger change in m.

The above d calculations give roughly the correct value of
the magnitude of d, and thus the order. To solve the sign
ambiguity in Eq. (10) it is useful to include information
about the slope of jsind0(k)j at the wavelength used for the
d-calculations. The sign of the slope alternates with a period
of p/2 in d, as can be seen in Fig. 3, as does the sign in Eq.
(10). Thus if, for example, the slope has been determined to
be positive (using the analysis sketched in Table 1) then in
general the final d¼ m0p þ d0, where m0 is the fringe order
calculated from the above d calculations. Occasionally,
though, the initially calculated d is actually closer to
(m0 þ 1)p þ d0. In this case we reassign the fringe order

q 2000 The Royal Microscopical Society, Journal of Microscopy, 198, 1–9

Fig. 3. Illustration of how the calculation of the order of d is per-
formed. The sign of the calculated slope of jsin d0(k)j determines
whether d1[[mp; mp þp/2] or d1[[mp þ p/2; (m þ 1)p/2]. This
means that in the case of a positive slope any d1 calculated to be
within the area A ¼ [mp ¹p/4; mpþ 3p/4] will be assigned to
the region [mp; mp þ p/2]. Similarly, if the slope is negative and
d1 is calculated to belong to B then it will be assigned to the region
[mp þp/2; (m þ 1)p/2]. By finding m the ambiguity of the order is
solved. The slope of jsin d0(k)j follows the slope of jsin d1j as the
change in wavelength is reflected in a change in d ~ k. This is illu-
strated in Fig. 4, by the alternating sign in the difference between
the measured jsin d0j values.

Fig. 4. Measured pairs of jsin dj for 540 nm (X) and 550 nm (A)
plotted against the phase d derived with the new method. jsin dj

is represented by straight lines. It is obvious that the difference of
jsin dj for 540 nm and 550 nm increases together with the phase
d as a result of the larger thickness L of the wedge.
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for the final d to m ¼ m0 þ 1 and thus the final
d ¼ (m0 þ 1)p þ d0 (Fig. 3). A similar analysis can lead to
the reassignment of the initially calculated order in the case
of a negative slope of jsin d(k)j leading to a final (of either
d ¼ (m0 þ 1)p – d0 or d ¼ m0 p – d0.

It is worth noticing that in determining the extinction
angle, J, the value of d either leads to J being the angle to
the fast or to the slow axis, e.g. when the phase d lies
between (2m – 1)p and 2mp the J measured is the angle
between the horizontal and the fast axis, instead of the slow
axis (Fig. 1b). Determination of the absolute magnitude of d

enables one always to assign the orientation J with respect
to a common axis, which we normally take for convenience
to be the slow axis.

3. Experimental

It is obvious from Eq. (13) that the error when calculating
d1 is inversely proportional to the relative difference
between the two wavelengths used for the d1 calculations.
Thus, the set of wavelengths used for the experiment
needs to be chosen with care. The necessary considerations
are: (1) over which wavelength interval can it be
assumed that the dispersion is negligible? and (2) how big
is d? The wavelengths should be chosen so that Q will not
exceed 1.

In practice we have found that a set of interference filters
with wavelengths of 550 nm, 580 nm and 600 nm, for
which Q does not exceed 1 for d<40, is applicable to most

Fig. 5. (a) Conoscopic image of a (010)-cut crystal of mannitol, thickness 0.450 mm. Each red-coloured ‘ring’ represents values of jsin dj of 0,
where m increases by 1. (b) Conoscopic image with respect to the (relative) orientation angle which steps through 908, when d lies between
(2m – 1)p and 2mp. (c) Orthoscopic image of the absolute phase along [010] in mannitol. Three interference filters were used: 550 nm,
580 nm and 600 nm with a half-width of 10 nm.
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samples. It was even possible to use 540 nm and 550 nm
filters in one case due to very little initial error on the d0,1

and d0,2, which were averaged over 400 pixels.
The quality of the interference filters was checked by the

supplier (Ealing Electro Optics, Inc., Holliston, MA, U.S.A.)
and documented with spectra showing the transmission as
a function of the wavelength.

3.1. Quartz wedge

The equations were first tested on a quartz wedge, where
the phase difference increases with the thickness of the
wedge. The contribution due to dispersion of the double
refraction is also in proportion to the thickness and is small
at lower d. The values of jsin dj were derived with the RP
method as described above (Glazer et al., 1996). The
measurements were carried out at 540 nm and 550 nm
using interference filters of 10 nm spectral width with a
halogen light bulb serving as the light source.

Equation (13) was used to derive the value of the phase
assuming that S1 ¼ S2 and Q ¼ 0. Figure 4 shows the result
for increasing thickness of the wedge where the procedure is
repeated at different positions along the wedge to derive the
phase. From 21 measured jsin dj-pairs we found one failure
in calculating a correct phase, due to the fact that the above
assumptions occasionally fail for high d-values.

3.2. Conoscopic and orthoscopic images

In order to test the upper limitations of our approach, we
tried a (010) cut of an optically biaxial material, mannitol,
C6H14O6 (Kaminsky & Glazer, 1997). Figures 5(a) and (b)
show the conoscopic images of jsin dj and the relative
extinction J. A conoscopic image arises from the back-focal
plane in the microscope and represents an image of the light
source; with the sample within the optical train, a variation
of the final state of polarization can be seen that depends on
the path of the light as it goes through the sample. Each

q 2000 The Royal Microscopical Society, Journal of Microscopy, 198, 1–9

Fig. 6. Gypsum fragment of varying thickness. (a) jsin dj, (b) absolute, (c) apparent (when assuming that m ¼ 0) orientation of the slow axes
at 580 nm, (d) absolute orientation of the slow axis. The wavelengths used to derive the absolute phase and absolute orientation were
550 nm, 580 nm and 600 nm. If for a point in the image jsin dj<0.04 for all three wavelengths, then this point is taken to belong to the
background, and is coloured black.
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pixel in each image represents a different angle towards the
sample normal vector. This angle becomes more obtuse the
further a pixel deviates from the centre of the image. As a
further result, the orientation of the ellipsoidal section
normal to the light path depends on the direction of the light.

The RP method is able to separate out this orientation
angle and produce two different conoscopic images, the first

depending only on the retardance, the second only on the
extinction (Fig. 5b). Those images are otherwise always
merged using conventional techniques (for a description of
conoscopic images, see Hartshorne & Stuart, 1964), and as
far as we know this is the first time that separate conoscopic
images illustrating magnitude and orientation have been
demonstrated. We see further that the apparent extinction
angle exhibits changes by 908 when passing through a
retardance of mp (change in colour from blue to orange in
Fig. 5). The images allow one to count the order 2m easily,
starting at the two distinct optical axes, where the value of d

equals 0. As a result, one expects a value for d in the centre
of the image of about 28. Figure 5c shows the result when
using ordinary, orthoscopic geometry, which gives an image
of the crystal itself, and indeed the colour level reveals a d of
about 27.6(3). The interference filters used were of 10 nm
spectral half-width at wavelengths of 550 nm, 580 nm and
600 nm.

3.3. Gypsum fragment

Gypsum cleaves easily; however, when cut slightly inclined
to the easy cleavage plane, the resulting sample exhibits
regions of different thickness. As a result, we obtain a
coloured jsin dj image (Fig. 6a) in the RP microscope that
consists of several orders 2m of d (Fig. 6b) as illustrated by
the changes in orientation of the apparent extinction
(Fig. 6c). After calculating d the true orientation of the
slow axis proves to be constant throughout most of
the sample (Fig. 6d). The same interference filters as for
the orthoscopic image of mannitol were used.

Because gypsum is a material with a high optical
dispersion we cannot ignore the second term in Eq. (11).
Instead, we recast this equation as:

∂d0

∂k
¼ 6L ðn2 ¹ n1Þ þ k

∂
∂k

ðn2 ¹ n1Þ

� �
¼ 6d

1
k

þ
1

ðn2 ¹ n1Þ

∂
∂k

ðn2 ¹ n1Þ

� �
Leading to:

Rd ¼ 6k
∂d0

∂k
; where R ¼ 1 þ

k
ðn2 ¹ n1Þ

∂
∂k

ðn2 ¹ n1Þ

� �
ð14Þ

R can be calculated if we assume that the orientation of the
slow axes of the indicatrix is constant throughout the
sample. This enables us to refine the value R in order to
achieve a uniform orientation image. In the case of gypsum
we find R ¼ 1.09(1) at l¼ 580 nm.

3.4. Rock minerals

As a practical example of the use of the new method, a
30 mm thick cross-section of andesite has been investigated.

Fig. 7. Andesite, thickness 30 mm. (a) transmittance (black ¼ opa-
que), (b) absolute phase, (c) absolute orientation of the slow axis.
Interference filters as in Fig. 6.
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We used filters at 550 nm, 580 nm and 600 nm. Figure 7a
shows the transmittance I0 of this rather heterogeneous
sample. Nearly black grains of magnetite(1) within the
fluxional groundmass can be distinguished from the other
more transparent phenocrysts(2,3). On the bottom left
(blue) in Fig. 7(b) we see strongly birefringent grains of
lamella twinned plagioclase(2). The zoned phenocryst(3)
(augite, basal section) in Fig. 7(c) extinguishes symmetri-
cally. The plagioclase extinguishes obliquely as expected.

4. Conclusion

The example of the quartz wedge clearly shows how a
change of wavelength can be used to estimate the absolute
order of the phase (from experimental jsin dj measurements.
The reliability of the method depends on the accuracy in
measuring jsin dj and the amount of dispersion of the
double refraction. If the latter is known, the method can be
applied to even higher values of the order 2m than those
shown here. It should be pointed out that the method is
always able to detect whether the phase, d, relative to a
starting point, increases or decreases due to temperature
changes or other external factors.

The method can be applied to phase values up to at least
30 with a reliability of about 5%, as shown in the (010)-cut
of mannitol and the gypsum fragment.

If the accuracy in measuring jsin dj can in future be
enhanced it will be possible to separate out the dispersion
more precisely by comparison of the calculated d and the
measured jsin dj values. This would be in itself rather useful,
as the dispersion may be itself characteristic of a particular
material, thus helping in the task of identifying a substance
automatically.

Finally, the combination of the RP method and a change of
wavelength provides the means to measure double refraction
of any material without the need for further compensatory
steps. The resolution obtained with the SWRP-method, or
rather the dynamic range, is increased dramatically. It may
now be possible with this technique to derive characteristic
fingerprints of materials such as rock-minerals.
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