The Crystal Structure of Sodium Fluosilicate*

By Allan Zalkin, J. D. Forrester and David H. Templeton
Lawrence Radiation Laboratory and Department of Chemistry, University of California, Berkeley, California, U.S. A.

(Received 20 November 1963)

Abstract

A study by X-ray diffraction showed that $\mathrm{Na}_{2} \mathrm{SiF}_{6}$ is hexagonal (trigonal) with $a=8.859, c=5.038 \AA$ (each $\pm 0.002 \AA$), $Z=3, D_{x}=2.74 \mathrm{~g} . \mathrm{cm}^{-3}$. The space group is $P 321$. The SiF_{6} groups are almost regular octahedra with $\mathrm{Si}-\mathrm{F}=1 \cdot 695 \AA$ (corrected for thermal motion). Each sodium has 6 fluorine neighbors at the corners of a considerably distorted octahedron. Twinning which superimposes $h k l$ and $k h l$ is common. The structure was determined with data from a twinned specimen which contained unequal amounts of the two orientations.

Introduction

Sodium fluosilicate came to our attention as the result of hydrolysis of a sample of XeF_{4} in a Pyrex vessel. The hexagonal crystals were found with orthorhombic crystals of NaBF_{4} as a residue after evaporation of the solution. In seeking the identity of these crystals we discovered contradictions in the literature concerning sodium fluosilicate which led us to undertake the determination of the structure. In this paper we report the result of a three-dimensional X-ray diffraction study of a twinned specimen of $\mathrm{Na}_{2} \mathrm{SiF}_{6}$.

According to X-ray powder diffraction data, sodium fluosilicate has the same crystal structure as $\mathrm{Na}_{2} \mathrm{GeF}_{6}$ (Cox, 1954; Cipriani, 1955), $\mathrm{Na}_{2} \mathrm{TiF}_{6}, \mathrm{Na}_{2} \mathrm{MnF}_{6}$, $\mathrm{Na}_{2} \mathrm{PtF}_{6}, \mathrm{Li}_{2} \mathrm{SiF}_{6}$ (Cox, 1954), $\mathrm{Na}_{2} \mathrm{PdF}_{6}, \mathrm{Na}_{2} \mathrm{RhF}_{6}$ (Cox, Sharp \& Sharpe, 1956), and $\mathrm{Na}_{2} \mathrm{IrF}_{6}$ (Hepworth, Robinson \& Westland, 1958). A determination of this structure was reported by Cipriani (1955), but we believe it to be in error because of incorrect choice of symmetry.

Crystals of $\mathrm{Na}_{2} \mathrm{SiF}_{6}$, found as crusts on lava at Vesuvius, are known as the mineral malladrite (Palache, Berman \& Frondel, 1951).

Experimental

Crystals of $\mathrm{Na}_{2} \mathrm{SiF}_{6}$ were prepared by dissolving $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SiF}_{6}$ in water, adding NaOH solution, and heating briefly. On cooling, numerous well-formed small crystals of sodium fluosilicate were obtained.

X-ray photographs with the use of the Weissenberg technique and copper radiation yielded preliminary data. A 'single crystal' (later found to be twinned) with the shape of a hexagonal prism and of approximate dimensions $0.08 \times 0.08 \times 0.08 \mathrm{~mm}$ was used for collecting the intensity data. The cell dimensions and intensities were measured with a General Electric

[^0]XRD 5 goniostat equipped with a scintillation counter, using Mo $K \alpha$ radiation ($\lambda=0.70926 \AA$ for Mo $K \alpha_{1}$).

The 270 independent reflections permitted by the space group in the sphere of reflection with $\sin \theta / \lambda$ less than $0.596\left(2 \theta<50^{\circ}\right)$ were measured with counting times of 20 sec each. Of these, only two were recorded as zero intensity. No corrections were made for either absorption or extinction. We estimate the linear absorption coefficient to be $\mu=8.2 \mathrm{~cm}^{-1}$ for molybdenum radiation. For the crystal used, μR is less than 0.03 , and the absorption correction is unimportant. A correction for twinning is described later.

Calculations were made on an IBM 7090 computer with our version of the Gantzel-Sparks-Trueblood full-matrix least-squares program which minimizes $\Sigma w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \Sigma w\left|F_{o}\right|^{2}$. Atomic scattering factors were taken as the values given by Ibers (1962) for Na^{+}and neutral Si and F. Dispersion is unimportant for these atoms with molybdenum radiation and was neglected.

After twinning was detected, another crystal was investigated in hope of finding less twinning. In fact, it contained the two orientations in more nearly equal amount than did the first specimen.

Results

Unit cell and space group

The primitive cell contains three formula units $\mathrm{Na}_{2} \mathrm{SiF}_{6}$ and is trigonal with dimensions:

$$
a=8 \cdot 859 \pm 0 \cdot 002, c=5 \cdot 038 \pm 0 \cdot 002 \AA
$$

The density is calculated as $2.74 \mathrm{~g} . \mathrm{cm}^{-3}$, compared with 2.755 measured by Stolba (1872). Axial dimensions and ratios are compared with other work in Table 1.

An initial inspection of the film data gave the impression that a sixfold symmetry axis was present. The superior precision of the counter measurements

Table 1. Axial dimensions and ratios, $\mathrm{Na}_{2} \mathrm{SiF}_{6}$

	a	c	c / a
	$8.859 \AA$	$5.038 \AA$	0.5687
This work	8.86	$5 \cdot 02$	0.567
Cox (1954)	8.87	5.07	0.572
Cipriani (1955)			0.5635
Groth (1906)			1.333^{*}

* This value is calculated from a polar angle $56^{\circ} 59 \cdot 5^{\prime}$ for ($10 \overline{\mathrm{l}} \mathrm{l}$). We think that a blunder has been made, since the complement of this angle corresponds to $c / a=0 \cdot 5626$, in agreement with the other values.
showed on the contrary that the crystal had Laue symmetry $\overline{3} m$, in agreement with Cipriani (1955). The mirror symmetry of this Laue group is oriented with a plane perpendicular to the primitive a axis, as indicated by the full symbol $\overline{3} m 1$ rather than $\overline{3} 1 m$. With no reflections systematically absent, we have a choice of the three space groups $P 321, P 3 m 1$, and $P \overline{3} m 1$. The space groups $P 312, P 31 m$, and $P \overline{3} 1 m$ are excluded by the orientation of the symmetry elements. Our final structure has the symmetry of space group P321.

Determination of the structure

We noted immediately that the cell could be filled with close-packed fluorine atoms arranged in octahedral SiF_{6} groups. One such group was placed with Si at the origin and the other two with Si at $\pm\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{2}\right)$. The three space groups give diverse possibilities for the sodium positions.

We started refinement by least squares with the assumption (in this case ill-advised) of a center of symmetry, with the following atomic positions:

First (incorrect) trial structure in space group $P \overline{3} m 1$

$$
\begin{aligned}
& \mathrm{Si}(1) \text { in } 1(a): 0,0,0 . \\
& \mathrm{Si}(2) \text { in } 2(d): \pm\left(\frac{1}{3}, \frac{2}{3}, z\right) ; z=0.51 \text {. } \\
& \mathrm{Na} \text { in } 6(g): \pm(x, 0,0 ; 0, x, 0 ; \bar{x}, \bar{x}, 0) \text {; } \\
& x=0.34 \text {. } \\
& \mathrm{F}(1) \text { in } 6(i): \pm(x, \bar{x}, z ; x, 2 x, z ; 2 \bar{x}, \bar{x}, z) \text {; } \\
& x=0.091, z=0.805 \text {. } \\
& \mathrm{F}(2) \text { in } 6(i): x=0.424, z=0.705 \text {. } \\
& \mathrm{F}(3) \text { in } 6(i): x=0.242, z=0.315 \text {. }
\end{aligned}
$$

This arrangement placed the sodium atoms in octahedral holes and all at the same level, $z=0$. Four cycles of refinement, using all the data, each reflection with unit weight, and with an isotropic temperature factor $\exp \left(-B \lambda^{-2} \sin ^{2} \theta\right)$ for each atom produced a conventional unreliability index $R=$ $\Sigma\left|\left|F_{o}\right|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|=0.44$. Various combinations of sign changes for z parameters of the fluorine atoms and of moving the sodium atoms to $z=0.5$ only reduced R to $0 \cdot 35$. At this stage the thermal parameter for sodium was larger than any other atom.

The above trial structure is nearly the same as the structure reported by Cipriani (1955) which came to
our attention after our work was completed. Cipriani reported $R=0.41$ for $\mathrm{Na}_{2} \mathrm{SiF}_{6}$ and $R=0.31$ for $\mathrm{Na}_{2} \mathrm{GeF}_{6}$ (in which incorrect sodium positions have less effect).

Because of our lack of success, we went to the noncentric group P321. In this space group the sodium atoms are in two independent threefold sets, and each fluorine octahedron is free to rotate about its threefold axis. Continued refinement of the structure with this greater freedom reduced R to $0 \cdot 28$, and the thermal parameter of one sodium atom became very large. This result suggested that the offending sodium atom should be moved to $z=0.5$, which is permitted in this space group. This change produced dramatic improvement with much better thermal parameters and $R=0 \cdot 16$.

At this point we realized that we had considered only one of the two independent ways that the structure can be oriented with respect to the coordinate system of the data. Rotation of the structure by 60° about the c axis gives the second structure. With this change the atoms were distributed in the final sets of positions:

Space group P321

$\operatorname{Si}(1)$ in $1(a): 0,0,0$.
$\operatorname{Si}(2)$ in $2(d): \frac{1}{3}, \frac{2}{3}, z ; \frac{2}{3}, \frac{1}{3}, \bar{z}$. $\mathrm{Na}(1)$ in $3(e): x, x, 0 ; \bar{x}, 0,0 ; 0, \bar{x}, 0$. $\mathrm{Na}(2)$ in $3(f): x, x, \frac{1}{2} ; \bar{x}, 0, \frac{1}{2} ; 0, \bar{x}, \frac{1}{2}$. $\mathrm{F}(1), \mathrm{F}(2)$, and $\mathrm{F}(3)$ each in $6(g)$:

$$
x, y, z ; \bar{y}, x-y, z ; y-x, \bar{x}, z
$$

$$
y, x, \bar{z} ; \bar{x}, y-x, \bar{z} ; x-y, \bar{y}, \bar{z}
$$

Since refinement then reduced R to $0 \cdot 136$, we retained the second orientation. The relatively small difference in agreement for the two orientations is related to the fact that the experimental intensities do not show large deviations from sixfold symmetry.

We introduced anisotropic temperature factors of the form

$$
\exp \left(-\beta_{11} h^{2}-\beta_{22} k^{2}-\beta_{33} l^{2}-2 \beta_{12} h k-2 \beta_{13} h l-2 \beta_{23} k l\right)
$$

with $4 \beta_{i j}=a_{i}^{*} a_{j}^{*} B_{i j}, a_{i}^{*}$ being the length of the i th reciprocal axis. With this notation, the anisotropic thermal parameters $B_{i j}$ are in the units (\AA^{2}) which are used for isotropic thermal parameters B in temperature factors of the form $\exp \left(-B \lambda^{-2} \sin ^{2} \theta\right)$. Four cycles of least-squares refinement with each atom having an anisotropic temperature factor reduced R to $0 \cdot 116$, but left serious discrepancies for certain reflections. A refinement with isotropic temperature factors in a space group of lower symmetry ($P 3$), which provided considerably more independent coordinates, likewise had little effect on these discrepancies.

It was noticed that we were calculating much larger differences between $F(h k l)$ and $F(k h l)$ than were found in our experimental data. This fact suggested twinning such that $h k l$ and $k h l$ are interchanged in position. This can be accomplished by rotation about c or by
reflection in (100). Because of the possibility that the crystals may be optically active, these twin laws in principle are distinguishable by optical methods, but we have no evidence for choosing between them. For such twinning we have the relations:

$$
\begin{aligned}
& x I(h k l)+(1-x) I(k h l)=J(h k l), \\
& (1-x) I(h k l)+x I(k h l)=J(k h l),
\end{aligned}
$$

where x is the fraction of the specimen with the correct orientation, $I(h k l)$ is the intensity for an untwinned

Table 2. Observed structure factor magnitudes (FOB) and calculated structure factor magnitudes (FCA), each multiplied by 10
The observed values have been corrected for twinning as described in the text. The phase angle ($P H I$) of the calculated structure factor is given as a fraction of a circle, multiplied by 1000

		FO	FOB						FCB	FGA				FCB	FCa	PHI				FCB	FCA	PHI				08	fa	PH			F		
1	0	0	22		000		0	0	60	69	382	5	1	235	238	026		2	2	97	131	500		21	27	276	279	97	3		175	169	623
2	0	0	33	20	000		0	0	87	100	094		1	20	46	468		2		267	276	341			12	120	128	024			12	13	016
3	0	16	163	185	coo		0	014	142	131	000		1	35	48	842		2		304	297	992		41	27	278	250	568			84	77	384
4	0	0	82	84	000		0		49	41	477		41	151	153	500		32	2	124	118	838		51	18	18 C	155	925			77	17	980
	0		80	66	000		0	14	143	154	735		41	448	457	553		2		95	96	284			3	36	48	958			80	92	000
6	0	013	138	131	000		0	013	137	134	932		41	149	167	035			2	56	54	103			3	47	13	360		2	117	37	067
	0	0	91	79	000		0	0	24		849		1	19	78	963		2		78	71	450			20	208	209	000			69	69	103
8	0		83	81	090		0	0	89	79	000		1	148	143	508		2		60	53	620			22	224	220	021			78	68	574
9	0	0	35	46	000		0	0	58	58	990		41	99	113	004		3	2	831	857	coo			18	189	197	348		24	104	9	57
0	0	0	16	9	000		0	0	99	103	333			98	84	817		3	2	268	285	600				231	245	99			98	97	33
1	10	476	476	456	005		0	0	60	55	964		1	289	286	000		3	2	39	35	508		2	3	96	106	268		3	208	19	000
2	10	16	164	172	287		0	0	86	81	000		51	174	161	983			2	126	117	941			3	19	30	94 C		3	125	137	955
3	10	135	135	135	751		0	0	63	73	362		51	10	31	015		3		40	35	970			1	113	123	065		3	139	132	823
4	0		33	28	430		0	0	43	46	000		51	224	220	007		5	2	116	122	804		3	3	74	53	000			16	162	986
	0	0	96	95	388		1	28	281	267	500		51	112	113	984		3	2	95	78	928			15	155	170	936			42	44	787
	0	0	49	41	477		,	37	373	373	000		51	42	38	803		4	2	169	149	500			22	226	212	csc			165	188	000
7	0	0	58	58	990		1	37	377	377	000		61	60	60	000				308	299	001			3	0		435			53	17	026
			72	73	362		,	66	660	620	000		1	128	132	798		4	2	115	118	401			15	151	141	566			88	104	304
0	0	0	28	2 C	c00		1	15	151	138	500			233	235	139			2	63	55	960				96	85	150			42	38	828
	-	16	164	172	287		01	24	245	248	000		1	58	45	473				44	51	408		4	3	46	87	00C			88	16	000
	-		252	236	477	6	1	16	169	165	500		1	10	21	873		4	2	57	87	368				101		792				75	
3	0	19	196	196	770		01		30	23	500			130	46	500				54	22	500			3	83	S4	20 C			139	128	991
	20	27	276	268	298		01	1	94	1 l 0	000		1	53	112	015				154	186	278			160	160	163	578			165	163	OCO
			339	334	005	0	,	32	322	347	000		1	58	54	949		5	2	27	37	189		44	3	41	23	519				10	
	0	14	140	154	735				436	435	695			35	16	126				103	99	858			367	67	55	921			153	141	500
	20	11	111	103	333		11	17	177	170	086		1	122	109	000				125	115	354				315	279	00 C			235	214	000
			165	185	000		11	197	197	186	700		1	62	93	991		6		233	231	000		15	1	173	182	911		0	148	120	00
	0	13	131	135	751	4			325	308	937		2	104		500				152	121	834		25	35	56	36	283				34	
	30	19	197	196	770		11		195	202	948		2	53	57	000			2		41	828			11	111	100	134			40	49	
			610	610	986	6	11	10	109	76	791		02	2192	159	000		8	2	110	88	518		45		33	45	878		0	100	86	000
4	0	0127	127	130	835				230	232	470			655	633	000				183	181	coo		6	35	58	78	500			118	143	0co
	0	0	. 73	62	138		11	14	142	130	853		02	263	278	000				179	159	020			3	84	65	973			158	155	
6	O		129	134	932	0			356	379	000		02	2168	159	000		7	2	60	61	368		63	31	139	123	948			56	55	015
7	0	0	60	55	954		21		166	194	887		02	261	268	000		8		95	109	000		73		68	66	COC			68	56	613
	-	0	82	84	cos	2	21		252	244	270		02	20	28	500		-	2	41	14	357		17	137	137	139	484			16	63	
			23	28	430		21		348	349	089	8	02	251		500		0	31	171	157	000			47	479	488	OOC			127	166	coo
2	0	02	210	268	298		21		161	161	951		12	228	20	500		0	3	228	209	500				55	55	500			56	46	021
	0	013	133	130	835		21	12	122	127	443		12	2144	142	520		0		204	213	coo				65	47	50 C			53	65	
	40	0	413	471	609			19	190	178	021	2	12	2164	144	172		0	3	281	299	500			40	406	388	000			130	115	047
	0		68	69	382		21	11	112	103	158		12	2238	2 C 9	942		-	3	163	151	C00		404	17	172	164	50 C			67	53	000
6	0	0	\bigcirc		349	0	31	70	705	715	500		12	2151	163	948		0		229	264	000				71	13	500			39	38	647
0	0		82	66	000		31		83	60	412		12	2218	2 CO	303		0		58	47	500		5	10	106	121	coc			116	110	
1	0	010	100	95	388	2	31	27	274	258	987		2	2160	183	667		0		39	58	coo				0	19	000			69	58	5co
2	50	033	336	334	005	3	1	1	95	93	485		12	2216	230	011				180	195	500				88	89	-				61	
	50		66	62	138		31		1031	103			2																				

Table 3. Final coordinates and estimated standard deviations*

	x	$\sigma(x)$	y	$\sigma(y)$	$z(z)$	
$\mathrm{Si}(1)$	(0)	-	(0)	-	(0)	-
$\mathrm{Si}(2)$	$\left(\frac{1}{3}\right)$	-	$\left(\frac{2}{3}\right)$	-	0.5062	0.0012
$\mathrm{Na}(1)$	0.3790	0.0010	(0.3790)	-	(0)	-
$\mathrm{Na}(2)$	0.7143	0.0009	(0.7143)	-	$\left(\frac{1}{2}\right)$	-
$\mathrm{F}(1)$	0.0870	0.0018	-0.0918	0.0017	0.8099	0.0014
$\mathrm{~F}(2)$	0.4442	0.0012	-0.4006	0.0013	0.7007	0.0014
$\mathrm{~F}(3)$	0.2299	0.0015	-0.2599	0.0015	0.3098	0.0014
* Values in parentheses indicate coordinates which are not independent parameters.						

Table 4. Final thermal parameters and estimated standard deviations*

	$\mathrm{Si}(\mathrm{l})$	$\mathrm{Si}(2)$	$\mathrm{Na}(1)$	$\mathrm{Na}(2)$	$\mathrm{F}(1)$	$\mathrm{F}(2)$	$\mathrm{F}(3)$
B_{11}	$1 \cdot 3$	$1 \cdot 1$	$2 \cdot 4$	$1 \cdot 6$	$3 \cdot 6$	$1 \cdot 6$	$1 \cdot 9$
$\sigma\left(B_{11}\right)$	$0 \cdot 2$	$0 \cdot 1$	$0 \cdot 3$	$0 \cdot 2$	$0 \cdot 5$	$0 \cdot 4$	$0 \cdot 4$
B_{22}	$(1 \cdot 3)$	$(1 \cdot 1)$	$(2 \cdot 4)$	$(1 \cdot 6)$	$2 \cdot 7$	$1 \cdot 9$	$2 \cdot 5$
$\sigma\left(B_{22}\right)$	-	-	-	-	$0 \cdot 5$	$0 \cdot 4$	$0 \cdot 4$
B_{33}	$1 \cdot 9$	$1 \cdot 3$	$1 \cdot 3$	$2 \cdot 5$	$3 \cdot 1$	$2 \cdot 3$	$2 \cdot 3$
$\sigma\left(B_{33}\right)$	$0 \cdot 4$	$0 \cdot 2$	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 3$
B_{12}	$(0 \cdot 6)$	$(0 \cdot 5)$	$0 \cdot 9$	$0 \cdot 7$	$2 \cdot 1$	$1 \cdot 2$	$1 \cdot 3$
$\sigma\left(B_{12}\right)$	-	-	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 3$
B_{13}	(0)	(0)	$0 \cdot 1$	$-0 \cdot 1$	$0 \cdot 9$	$0 \cdot 5$	$-0 \cdot 4$
$\sigma\left(B_{13}\right)$	-	-	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 5$	$0 \cdot 3$	$0 \cdot 4$
B_{23}	(0)	(0)	$(-0 \cdot 1)$	$(0 \cdot 1)$	$-0 \cdot 4$	$1 \cdot 3$	$-0 \cdot 2$
$\sigma\left(B_{23}\right)$	-	-	-	-	$0 \cdot 5$	$0 \cdot 3$	$0 \cdot 4$

* Values in parentheses indicate parameters which are not independent.
crystal, and $J(h k l)$ is the intensity for the twinned crystal.

If a value is assumed for x, the above equations can be solved to give the intensity data for the hypothetical untwinned crystal. By trial of various values of x, starting with 0.75 and with refinement with isotropic thermal parameters, we decided that 0.59 gave the optimum agreement. This value of x causes some of the corrected intensities to vanish, and a smaller value gives some corrected intensities which are negative (i.e., physically impossible) by amounts which exceed the estimated experimental uncertainty.

With $x=0.59, R$ was 0.099 . Four further cycles with anisotropic temperature factors reduced R to 0.085 , using 44 parameters in all. In the last cycle, no parameter shifted as much as 3% of the estimated standard deviation.

While introduction of the correction for twinning made a substantial reduction in the largest discrepancies, it caused only small changes in the structure. No atom moved as much as $0 \cdot 1 \AA$ as a result of this correction. The change from isotropic to anisotropic temperature factors made little improvement in the agreement and moved no atom more than $0.01 \AA$.
The observed structure factors, after this correction for twinning, are compared with the calculated structure factors in Table 2. Coordinates for the atoms are listed in Table 3 and the thermal parameters in Table 4. The standard deviations of parameters were estimated assuming that the discrepancies of the structure factors represent random errors. Because of the symmetries of the special positions, several of the coordinates and thermal parameters are subject to constraints; e.g., $B_{11}=B_{22}=2 B_{12}$ for each Si atom.

No attempt was made to refine the structure in space group $P 3 m 1$ because this symmetry restricts the sodium atoms to a single z coordinate if they are to be in suitable holes in the fluorine packing. The results in group P321 show clearly that the sodium atoms are not so arranged.

Discussion

The crystal structure is shown in Fig. 1, and some of the interatomic distances are listed in Table 5. There are two independent kinds of SiF_{6}^{2-} ions, but their dimensions are equal and their shapes are regular-octahedral within the accuracy of the experiment. The mean $\mathrm{Si}-\mathrm{F}$ bond distance is observed as I. $68 \AA$. Correction for thermal motion with the assumption that F rides on Si increases this distance to $1.695 \pm 0.006 \AA$. Several measurements of this bond distance in other crystals have given values in the range 1.65 to $1.75 \AA$ (Gossner \& Kraus, 1934; Ketelaar, 1935; Hoard \& Vincent, 1940; Hoard \& Williams, 1942).

Table 5. Interatomic distances and standard deviations in $\mathrm{Na}_{2} \mathrm{SiF}_{6}$
$\left.\begin{array}{lcc} & \text { Atom } & \text { Distance } \\ \mathrm{Si}(1) & 6 \mathrm{~F}(\mathrm{l}) & 1 \cdot 673 \pm 0.012 \mathrm{~A} \\ & & (1.690 \text { corrected }\end{array}\right)$

* Corrected for thermal motion with assumption that F rides on Si .
\dagger Standard deviation of the mean, estimated from the standard deviations of the separate distances.

The F-Si-F bond angles are 90° or 180° within 2° or less, with standard deviations estimated as 1°.
Each sodium atom is in an 'octahedral' hole, with six fluorine neighbors at distances which are only approximately equal. These distances range from 2.18 to $2.45 \AA$ with standard deviations of $0.01 \AA$. The average $\mathrm{Na}-\mathrm{F}$ distance is $2 \cdot 32 \AA$. The $\mathrm{F}-\mathrm{Na}-\mathrm{F}$ angles deviate by nearly as much as 30° from the 90° or 180° values they would have if the coordination polyhedron were a regular octahedron.
This structure of $\mathrm{Na}_{2} \mathrm{SiF}_{6}$ is remarkably similar to that found by Stanley (1956) for $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$:

$$
a=9.785, c=6.295 \AA, c / a=0.643,
$$

space group P321. If the pair of S atoms in each dithionate ion is considered as a single atom, then the two structures have atoms in the same sets of

Fig. 1. Crystal structure of $\mathrm{Na}_{2} \mathrm{SiF}_{6}$. The z coordinates $(\times 100)$ are indicated for some of the atoms, and the lengths (\AA) are given for some of the interatomic distances.
positions, with K corresponding to $\mathrm{Na}, \mathrm{S}_{2}$ corresponding to Si , and O corresponding to F .

References

Cipriani, C. (1955). Rend. soc. mineralog. ital. 11, 58. Cox, B. (1954). J. Chem. Soc. p. 3251.
Cox, B., Sharp, D. W. A. \& Sharpe, A. G. (1956). J. Chem. Soc. p. 1242.

Gossner, E. \& Kraus, O. (1934). Z. Kristallogr. 88, 223. Groth, P. (1906). Chemische Kristallographie. Vol. 1, p. 483. Leipzig: Wilhelm Engelman.

Hepforth, M. A., Robinson, P. L. \& Westland, G. S. (1958). J. Chem. Soc. 1958, 611.

Hoard, J. L. \& Vincent, W. B. (1940). J. Amer. Chem. Soc. 62, 3126.
Hoard, J. L. \& Williams, M. B. (1942). J. Amer. Chem. Soc. 64, 633.
Ibers, J. A. (1962). In International Tables for X-ray Crystallography. Vol. III, p. 202. Birmingham: Kynoch Press.
Ketelaar, J. A. A. (1935). Z. Kristallogr. 92, 155.
Palache, C., Berman, H. \& Frondel, C. (1951). Dana's System of Mineralogy. Vol. 2, p. 105. New York: John Wiley.
Stanley, E. (1956). Acta Cryst. 9, 897.
Stolba, F. (1872). Z. anal. Chem. 11, 199.

[^0]: * Work done under the auspices of the U.S. Atomic Energy Commission.

