Chapter 3.7

LAZY-PULVERIX

A program to calculate theoretical X-ray and neutron diffraction powder patterns

[^0]For a further description of the program see J.Appl.Cryst. (1977), 10, 73-74
LAZY-PULVERIX consists of two programs

- LAZY - decodes the input data and prepares the data file for PULVERIX.
- PULVERIX - reads the file from LAZY and calculates the powder pattern.

3.6.1 Instructions Summary

3.6.1.1 General remarks

Calculations for several structures may be done in one run, the order in which the data instructions are given within a set is not important. When reading the data instructions, the program identifies the kind of data instruction by labels in columns 1-6 (e.g. TITLE, CONDIT, CELL, SPCGRP etc.). One END instruction must terminate each set and one FINISH instruction must follow the last END instruction.

The format of the TITLE, CELL, LATICE, SYMTRY, SPCGRP, ATOM, END and FINISH instructions are compatible with the corresponding format of the X-RAY 76 program system, except small differences in certain prescriptions (see CELL and ATOM instructions). The minimum of input must contain TITLE, CELL, SPCGRP, ATOM, END and FINISH instructions. The SPCGRP instruction may be replaced by LATICE and SYMTRY instructions and vice versa.

TITLE instruction - title

```
format(a2,a3,1x,17a4)
    cols
    1- 5 title punch instruction label TITLE
    7-74 compnd any alphanumeric information (for instance the
    name of the substance)
```


CONDIT instruction - experimental conditions

```
format(3a2,4x,a4,f6.0, 2f5.0,1x,a1,i2,a2,1x,a1)
    cols
    1-6 condit punch instruction label CONDIT
    11-14 symwl symbol for wavelength
        adjust to the left of the field.
        example
        CUA1 = Copper K\alpha1 radiation.
        the list of allowed symbols is given at
        the end of this description.
        wavelengths for which no symbol exist
```


Notes

- It is recommended to compute all structures with neutral atoms. If form-factors for ionized atoms are used, the program will not make dispersion corrections. No dispersion correction will be made for neutron diffraction.
- If no CONDIT instruction is given, Cu-K α radiation and Debye-Scherrer technique is assumed. A correction for anomalous dispersion will be made and a complete powder pattern will be calculated.

CELL instruction - lattice constants

```
format(3a2,7x,3f8.0,3f9.0)
    cols
    1- 4 cell punch instruction label CELL
    14-21 a lattice parameters in Angstrom and degrees
    22-29 b cubic omit b,c,alpha,beta,gamma
    30-37 c hexagonal omit b,alpha,beta,
        and set gamma=120.
        rhombohedral see note below
    38-46 alpha tetragonal omit b,alpha,beta,gamma
    47-55 beta orthorhombic omit alpha,beta,gamma
    56-64 gamma monoclinic omit alpha,gamma
```

- Rhombohedral should be calculated with hexagonal axes. If rhombohedral axes are desired the structure must be described in the triclinic system.

LATICE instruction - symmetry center and Bravais lattice (this instruction may be replaced by a SPCGRP instruction)

```
format(3a2, 2x,a1, 2x,a1)
    cols
    1-6 latice punch instruction label LATICE
        9 isymce center of symmetry at origin
    C yes (centric)
    1 2 \text { symbr bravais lattice indicator}
                            P primitive
                            I body centered
                            R rhombohedral
                            F face centered
                            A a centered
                            B b centered
                            C c centered
                            blank primitive
```


For trigonal case

- P space groups give hexagonal lattice constants and set symbr=P
- R space groups :

1. hexagonal cell set symbr=R. The program assumes the standard (obverse) setting.
2. rhombohedral cell set symbr=P and give a,b, c and angles explicitly on CELL instruction (triclinic description).

If no LATICE instruction is given, a non centrosymmetric structure and a primitive lattice is assumed.

SYMTRY instruction - equivalent point positions (these instructions may be replaced by a SPCGRP instruction)

```
format(3a2,45a1)
    cols
    1-6 symtry punch instruction label SYMTRY
    7-51 ipos equivalent position coded in verbatim form.
    include one instruction for each position.
    rules for coding
    coordinates are separated by commas,
    fractions are written as two integers
        separated by a slash.
    blank spaces are ignored.
    example space group p 21/c
        SYMTRY X, Y, Z
        SYMTRY X,1/2-Y,1/2+Z
```

- If isymce=C then only one of any two centrosymmetric positions need to be given. If symbr= I, R, F, A, B or C, only one of the positions related by centering needs to be given
- If no SYMTRY instruction is given, x, y, z is automatically assumed, however if SYMTRY instructions are given then the x, y, z position MUST be included.

SPCGRP instruction - space group (this instruction may replace LATICE and SYMTRY instructions)

```
format(3a2,35a1)
    cols
    1-6 spcgrp punch instruction label SPCGRP
    8-17 ipos Hermann-Mauguin symbol for the space group.
        adjust to the left of the field
    rules for coding
    symmetry operators are separated by a
            slash or by a blank.
    the bar operation is coded as minus *-*
    screw axes are given by two integers
            that are not separated by a blank.
    examples
        P B C N, P 21/C, P -3
    the list of allowed symbols is given at
    the end of this description.
```

- For all other symbols the program may generate wrong equipoints without error messages.
- For non standard space group settings SYMTRY and LATICE instructions MUST be used.
- For centrosymmetric groups, the program assumes the setting having the centre at the origin.
- For R-space groups the hexagonal setting is assumed. R-space groups with rhombohedral axes must be simulated using LATICE and SYMTRY instructions corresponding to a triclinic description.

ATOM instruction - atom identifier and coordinates (use one atom

 instruction for each atom in the asymmetric unit).```
format(3a2,1x,a4,a2,3f8.0,f6.0,f5.0)
 cols
 1- 4 atom punch instruction label ATOM
 8-11 elemt symbol of element and ionisation state
 adjust to the left of the field.
 examples
 CA symbol for calcium(neutral)
 CA2+ symbol for calcium(ionized)
 only symbols listed in the table for
```



END instruction - terminates each set of data instructions

```
cols
1-3 end punch instruction label END
```

FINISH instruction - terminates the run

```
cols
 1-6 finish punch instruction label FINISH
```


## Note

This instruction must come after the last end instruction. It initiates execution of the program.

### 3.6.2 List of allowed symbols

### 3.6.2.1 Wavelengths (variable symwl on CONDIT instruction)

The lines contain the symbols for $\mathrm{K} \alpha 1, \mathrm{~K} \alpha 2$ and the weighted average of the $\mathrm{K} \alpha$ radiation for chromium, iron, copper, molybdenum and silver. The wavelengths in Angstrom are given in parentheses

| CRA1 | $(2.28970)$ | CRA2 | $(2.29361)$ | CR | $(2.2909)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| FEA1 | $(1.93604)$ | FEA2 | $(1.93998)$ | FE | $(1.9373)$ |
| CUA1 | $(1.54056)$ | CUA2 | $(1.54439)$ | CU | $(1.5418)$ |
| MOA1 | $(0.70930)$ | MOA2 | $(0.71359)$ | MO | $(0.7107)$ |
| AGA1 | $(0.55941)$ | AGA2 | $(0.56380)$ | AG | $(0.5608)$ |

### 3.6.2.2. ATOM identification (variable elemt on ATOM instruction)

The atom symbols are used to retrieve the scattering factors for X-rays and the nuclear (but not the magnetic) scattering factors for neutrons. Do NOT include the asterisk preceeding an atom symbol. This asterisk indicates atom identifiers that are allowed for both X-ray and neutron diffraction. All other symbols are allowed for x-ray diffraction only. Atom symbols followed by a point have a special meaning (see below). In case of X-ray diffraction use neutral atoms unless you know exactly what you want to calculate.

| * AC | * C | * DY | ${ }^{*} \mathrm{HE}$ | LU3 + | NP $4+$ | *PU | SI. | TM3 + |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AC3 + | C. | DY3+ | * HF | *MG | NP6+ | PU3 + | SI4+ | * U |
| * AG | * CA |  | HF $4+$ | MG2+ |  | PU4 + | * SM | U3+ |
| AG1+ | CA2+ | * ER | * HG | *MN | * 0 | PU6 + | SM3 + | U4+ |
| AG2 + | * CD | ER3+ | HG1+ | MN2+ | O1- |  | * SN | U6+ |
| * AL | CD2+ | * EU | HG2 + | MN3 + | O2-. | RA | SN2+ |  |
| AL3 + | * CE | EU2+ | * HO | MN4 + | *OS | RA2 + | SN4+ | *V |
| * AM | CE3+ | EU3+ | HO3 + | * MO | OS $4+$ | * RB | * SR | V2+ |
| * AR | CE $4+$ |  |  | $\mathrm{MO} 3+$ |  | RB1+ | SR2+ | V3+ |
| *AS | CF | *F | * I | MO5+ | *P | * RE |  | V5 + |
| AT | * CL | F1- | I1- | MO6 + | *PA | *RH | *TA |  |
| *AU | CL1- | * FE | *IN |  | *PB | RH3 + | TA5 + | *W |
| AU1+ | * CM | $\mathrm{FE} 2+$ | IN3+ | * N | PB2+ | RH4 + | * TB | W6 + |
| AU3 + | * CO | FE3+ | * IR | *NA | PB4+ | RN | TB3 + |  |
|  | $\mathrm{CO} 2+$ | FR | IR3+ | NA1+ | *PD | *RU | * TC | * XE |
| * B | CO3+ |  | IR4+ | * NB | PD2 + | RU3 + | * TE |  |
| * BA | * CR | * GA |  | NB3+ | PD $4+$ | RU4 + | * TH | *Y |
| BA2 + | CR2+ | GA3 + | *K | NB5 + | PM |  | TH4+ | Y3 + |
| * BE | CR3+ | * GD | K1+ | *ND | PM3 + | * S | * TI | *YB |
| $\mathrm{BE} 2+$ | * CS | GD3+ | *KR | ND3 + | PO | * SB | TI2+ | YB2+ |
| * BI | CS1+ | * GE |  | *NE | *PR | SB3+ | TI3+ | YB3+ |
| BI3+ | * CU | GE $4+$ | * LA | *NI | PR3+ | SB5+ | TI4+ |  |
| BI5+ | CU1+ |  | LA3 + | NI2+ | PR4+ | * SC | * TL | * ZN |
| BK | CU2+ | * H | * LI | NI3+ | *PT | SC3+ | TL1+ | ZN2+ |
| * BR |  | H. | LII+ | *NP | PT2+ | * SE | TL3 + | * ZR |
| BR1- | D. | H1- | * LU | NP3+ | PT4+ | * S I | * TM | ZR4+ |

Symbols with special meaning

```
H. Hydrogen HF scattering factor
C. Carbon HF scattering factor
SI. Silicon HF scattering factor
D. Deuterium (for neutron diffraction ONLY)
O2-. taken from Acta Cryst. vol.19, p.486(1965).
```


### 3.6.2.3 SPACE GROUP symbols (variable ipos on SPCGRP instruction)

Do NOT include the star preceeding some of the symbols. The star indicates centro-symmetric space groups which have been described with several settings. The program generates only the setting with the centre of symmetry at the origin of the unit cell. WARNING - a symbol that does not figure in this list may yield wrong equipoints.

```
TRICLINIC
\[
\begin{array}{llll}
\mathrm{P} & 1 & \mathrm{P} & -1
\end{array}
\]
```

MONOCLINIC
P 2
P 21
C 2
P M
P C
C M
C C
P $2 / \mathrm{m}$
P 21/M
C $2 / \mathrm{M}$
P 2/C
P 21/C
C 2/C

THE POINT POSITIONS GENERATED FROM THESE SYMBOLS CORRESPOND TO THE MONOCLINIC SETTING WITH B AS UNIQUE AXIS (ALPHA=GAMMA=90.)

ORTHORHOMBIC

| 222 | P 2221 | P 21212 | P 212121 | C 2221 |
| :---: | :---: | :---: | :---: | :---: |
| C 222 | F 222 | I 222 | I 212121 | P M M 2 |
| P M C 21 | P C C 2 | P M A 2 | P C A 21 | P N C 2 |
| P M N 21 | P B A 2 | P N A 21 | P N N 2 | C M M 2 |
| C M C 21 | C C C 2 | A M M 2 | A B M 2 | A M A 2 |
| A B A 2 | F M M 2 | F D D 2 | I M M 2 | I B A 2 |
| I M A 2 | P M M M | *P N N N | P C C M | *P B A N |
| P M M A | P N N A | P M N A | P C C A | P B A M |
| P C C N | P B C M | P N N M | *P M M N | P B C N |
| P B C A | P N M A | C M C M | C M C A | C M M M |
| C C C M | C M M A | * C C C A | F M M M | *F D D D |
| I M M M | I B A M | I B C A | I M M |  |

## TETRAGONAL

| P 4 | P | 41 | P | 42 | P | 43 | I | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I 41 | P | -4 | I | -4 | P | 4/M | P | 42/M |
| *P 4/N | *P | 42/N | I | 4/M | * I | 41/A | P | 422 |
| P 4212 | P | 4122 | P | 41212 | P | 4222 | P | 4221 |
| P 4322 | P | 43212 | I | 422 | I | 4122 | P | 4 M M |
| P 4 B M | P | 42 C M | P | 42 N M | P | 4 C C | P | 4 N C |
| P 42 M C | P | 42 B C | I | 4 M M | I | 4 C M | I | 41 M D |
| I 41 C D | P | -4 2 M | P | -4 2 C | P | -4 21 M | P | -4 21 C |
| I -4 M 2 | P | -4 C 2 | P | -4 B 2 | P | $-4 \mathrm{~N} 2$ | P | -4 M 2 |
| I -4 C 2 | P | -4 2 M | I | -4 2 D | P | 4/M M M | P | 4/M C C |
| *P 4/N B M | *P | 4/N N C | P | 4/M B M | P | 4/M N C | * P | 4/N M M |
| *P 4/N C C | P | 42/M M C | P | $42 / \mathrm{M} \mathrm{C} \mathrm{M}$ | *P | $42 / \mathrm{N} \mathrm{B} \mathrm{C}$ | *P | $42 / \mathrm{N}$ N M |
| P $42 / \mathrm{M} \mathrm{B} \mathrm{C}$ | P | 42/M N M | P | $42 / \mathrm{N} \mathrm{M} \mathrm{C}$ | * P | 42/N C M | I | 4/M M M |
| I 4/M C M |  | 41/A M D |  | 41/A C D |  |  |  |  |

TRIGONAL

| P 3 | P 31 | P 32 | R 3 | P -3 |
| :---: | :---: | :---: | :---: | :---: |
| R -3 | $\begin{array}{llll}P & 3 & 1 & 2\end{array}$ | $\begin{array}{llll}P & 3 & 2 & 1\end{array}$ |  | $\begin{array}{lllll}P & 31 & 1\end{array}$ |
| $\begin{array}{lllll}P & 32 & 1\end{array}$ | $\begin{array}{lllll}P & 32 & 2\end{array}$ | R 32 | P 3 M 1 | P 31 M |
| P 3 C 1 | P 31 C | R 3 M | R 3 C | P $-311 \begin{array}{llll} & \end{array}$ |
| $\mathrm{P}-311 \mathrm{C}$ | $\mathrm{P}-3 \mathrm{M} 1$ | $\mathrm{P}-3 \quad \mathrm{C} 1$ | $\mathrm{R}-3 \mathrm{M}$ | $\mathrm{R}-3 \mathrm{C}$ |

ALL R-SPACE GROUPS REFER TO THE HEXAGONAL SETTING HEXAGONAL

| P | 6 | P | 61 | P | 65 | P | 62 | P | 64 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P | 63 | P | -6 | P | $6 / \mathrm{M}$ | P | 63/M | P | 622 |
| P | 6122 | P | 6522 | P | 6222 | P | 6422 | P | 6322 |
| P | 6 MM | P | 6 C C | P | 63 C M | P | 63 M C | P | -6 M 2 |
| P | -6 C 2 | P | $-62 \mathrm{M}$ | P | $-62 C$ | P | $6 / \mathrm{M} \mathrm{M} \mathrm{M}$ | P | $6 / \mathrm{M} \mathrm{C} \mathrm{C}$ |
| P | 63/M C M | P | $63 / \mathrm{M} \mathrm{M} \mathrm{C}$ |  |  |  |  |  |  |

P 23
F 23
I 23
P 213
I 213

| P M 3 | *P N 3 | F M 3 | *F D 3 | I M 3 |
| :---: | :---: | :---: | :---: | :---: |
| P A 3 | I A 3 | P 432 | P 4232 | F 432 |
| F 4132 | I 433 | P 43312 | P 4132 | I 4132 |
| P -4 3 M | $\mathrm{F}-43 \mathrm{M}$ | I -43 M | $\mathrm{P}-43 \mathrm{~N}$ | F -4 3 C |
| I -43 D | P M 3 M | *P N 3 N | P M 3 N | *P N 3 M |
| F M 3 M | F M 3 C | *F D 3 M | * D 3 C | I M 3 M |
| I A 3 D |  |  |  |  |

### 3.6.3 Formulae for the Lorentz-polarisation factors

### 3.6.3.1 Debye-Scherrer technique

$l=1.0 /\left(\sin ^{2} \theta \times \cos \theta\right)$
$p=\left(1.0+\cos ^{2} 2 \theta\right) / 2$.

### 3.6.3.2 Guinier technique

$l=1 . /\left(\sin ^{2} \theta \times \cos \theta \times \cos (2 \theta-\beta)\right)$
$\beta=$ angle between the normal to the specimen and the direction of the incident beam.

$$
\begin{aligned}
\mathrm{p}= & \left(1.0+\cos ^{2} 2 \theta \times \cos ^{2} 2 \alpha\right) /\left(1+\cos ^{2} 2 \alpha\right) \\
& \alpha=\text { diffraction angle of monochromator. }
\end{aligned}
$$

$\alpha$ and $\beta$ depend on the geometry of the Guinier camera and the $d$ spacing of the reflecting planes of the monochromator crystal. For Guinier cameras other than Guinier-de Wolff or Guinier-Haegg or for monochromator crystals other than quartz changes in the program have to be made ( see remarks for adapting the program in the source deck of PULVERIX).

### 3.6.4. LAZY-PULVERIX implementation in WinGX

The programs LAZY and PULVERIX have been compiled essentially unaltered, but the limits have been substantially increased. A maximum of 5000 reflections may be calculated, up to 1000 atoms of one type may be entered, and 20 different atomic types are allowed. A new program PLOTLP has been written which plots the calculated intensities listed in the output file of PULVERIX (called PULVERIX.LST). This program is run automatically after LAZY and PULVERIX. Lineshapes may be Lorentzian, Gaussian or a 50:50 mix and linewidths may be varied. Monochrome or colour PostScript files may also be written. The plot parameters may be selected from the Plot[Parameters] sub-menu.

The program instructions are written by the GUI shown below, and the above input description is for informational purposes only. The calculated spectrum is displayed as a plot, which may be saved in PostScript format.

## W -azyPuluerix Control Panel X



Experimental conditions

- Debye-Scherrer/powder diffractometer

C Guinier-De Wolff camera
C Guinier-Haegg camera
$\bigcirc$ Neutron diffraction
$\sqrt{ }$ Apply Lorentz-polarisation correction
$\checkmark$ Apply anomalous dispersion correction


File Plot Help


### 3.6.5. Disclaimer

Although the program has been extensively tested by its authors, no warranty is made as to the accuracy and functioning. The values of wavelengths, scattering factor constants and the equi-points used by the program are part of the output (file PULVERIX.LST) and the user is advised to compare them with the values given in the International Tables for Crystallography.


[^0]:    KLAUS YVON, WOLFGANG JEITSCHKO and (the late) ERWIN PARTHE LABORATOIRE DE CRISTALLOGRAPHIE AUX RAYONS-X
    UNIVERSITE DE GENEVE
    24 QUAI ERNEST ANSERMET
    CH 1211 GENEVA 4 SWITZERLAND

