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Abstract 

For crystal structures analyzed by both X-ray and 
neutron diffraction, the anisotropic mean-square displa- 
cement parameters of the non-H atoms are sometimes 
found to differ significantly. The differences can usually 
be..adjuste..d by either: (1) an isotropic factor q, defined by 
U~ = qUa,, to correct for a temperature difference 
between the two. experiments; (2) anisotropic factors 
qij, def'med by Uff = qijU~, to correct for a temperature 
difference and different anisotropic diffraction effects of 
absorption, extinction, thermal diffuse scattering, multi- 
ple reflection, or systematic measuring errors in the two 
experiments; (3) anisotropic diffraction correction terms 
AU ij, defined by U~ = U~ + AuiJ; (4) the sum of an 
isotropic temperature correction., and an.isotropic diffrac- 
tion corrections, defined by Uff = qU~ + AU ij. Correc- 
tion parameters q, qij and AU': are easily calculated by 
linear least-squares fit, and the corrections from (3) or (4) 
seem to be the most reliable. Corrections calculated from 
X-ray and neutron uiJ's of the non-H atoms of a crystal 
can be useful for adjusting the neutron UiJ's of the H 
atoms for adoption, along with the neutron coordinates of 
the H atoms, as fixed parameters in an X-ray analysis of 
the eleclron density distribution. 

Introduction 

When the same crystal structure is analyzed by both X- 
ray and neutron diffraction, the two analyses sometimes 
yield systematically different anisotropic mean-square 
displacement parameters* for the non-H atoms. Since X- 
rays are scattered by electrons, while neutrons are 
scattered by nuclei, the X-ray U O values are often found 
to be larger than the neutron U~ values, and much of the 

*Throughout this paper we refer to mean-square displacement 
Ij 2 parameters U (A), defined by atomic Debye-Waller factors 

3 3 
e -w = exp(-2~ ~ ~ hihja*'a*iUU). 

i=l j=l 

The U q form a symmetric matrix U, and the mean-square atomic 
displacement parallel to any unit vector n is given by 

3 3 
(u 2) = nrUn = ~ ~ ninjU q, 

i=1 j=l 

where n i are the components of  the column vector n along the reciprocal 
lattice axes a *i. 
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difference can be attributed to the tendency of the X-ray 
values to fit not only the anisotropic atomic displace- 
ments due to thermal vibration, but also the nonspherical 
deformations of the valence electron-density distribution 
due to chemical bonding. When the X-ray refinement is 
limited to high-angle data, say (sin0)/2 > 0.8,~-1, for 
which the scattering is due mainly to the spherical core 
electron densities, or when multipolar valence electron- 
density distributions are explicitly parameterized in the 
X-ray structure factor model, the U ij differences are 
much smaller. In some such cases, e.g. a study of alloxan 
(Swaminathan, Craven & McMullan, 1985), the differ- 
ences are indeed insignificant. However, in other cases, 
e.g. a series of studies of ce-oxalic acid dihydrate 
(Coppens, Dam, Harkema, Feil, Feld, Lehmann, God- 
dard, Krtiger, Helner, Johansen, Larsen, Koetzle, 
McMullan, Maslen & Stevens, 1984), significant differ- 
ences persist, and it is not uncommon to find 

( ( a / o ' ) 2 )  1/2 ~>~> 2, 

where 

A = U o - U~ and rr = rr(zl) = [rra(u~/) + rr2(U~)] '/2 

In such cases it might be necessary - as a practical, 
operational ma t t e r -  to adjust the neutron parameters to 
the X-ray parameters in order to prepare so-called 
X-minus-N deformation electron-density maps (e.g. 
Coppens, 1978) or to adopt fixed neutron structural 
parameters and then fit rnultipolar pseudoatom electron- 
density parameters to the X-ray data (e.g. Craven & 
McMullan, 1979; Klooster, Swaminathan, Nanni & 
Craven, 1992). A similar practical problem arises in 
attempts at joint X-ray and neutron refinement of 
structural and electron-density parameters (Coppens, 
Boehme, Price & Stevens, 1981). 

Descriptive analysis 

Differences between mean-square displacement para- 
meters from two different diffraction analyses of the 
same crystal structure might be due to: 

(1) Different experimental temperatures 

Theory at various levels of approximation predicts that 
at sufficiently high temperatures, mean-square atomic 

Acta Crystallographica Section B 
ISSN 0108-7681 ©1995 



ROBERT H. BLESSING 817 

displacements due to thermal vibration should increase 
linearly with temperature. For example, in the harmonic 
oscillator approximation, the energy of a vibration mode 
with frequency v is, according to classical mechanics, 

E = 4zr2mv z(u2), 

or, according to quantum statistical mechanics, 

E = hv{½ + 1/[exp(hv/keT ) - 1]}. 

Equating these gives 

(u 2) = h/4zr2mv{½ + 1/[exp(hv/kaT ) - 1]}, 

and in the low-frequency high-temperature limit with 
hv < keT 

(u 2) = h/4zflmv( 1 + kaT/hv).  

(2) Different absorption effects 

The kinematic Bragg reflection intensity 

/Bragg (3( IFI2ALp 

is attenuated by the transmission factor 

A = V -1 fv exp[-/z(t0 + t l ) ]  d3t, 0 < A < 1. 

For spherical crystals, the transmission factor increases 
very nearly linearly with (sin 0) 2 

A ~ A 0 + Al(sin0) 2, 

where A 0 and A~ are functions of/zR (Bond, 1967, as 
cited by Dunitz, 1979, p. 289). For nonspherical crystals, 
the transmission also varies anisotropically. In general, 
absorption attenuates low-angle reflections more than 
high-angle reflections, and uncorrected absorption biases 
mean-square displacement parameters toward values that 
are too small. 

(3) Different extinction effects 

To a first approximation (Darwin, 1914, as cited by 
Dunitz, 1979, p. 290), the extinction factor y defined by 

Imeas - -  ylBragg, Y < 1, 

falls off exponentially with the kinematic intensity 

y ~" exp(--glBragg), g > 0. 

Extinction tends to be more serious in neutron than in X- 
ray data, because larger specimen crystals are used for 
neutron measurements. Extinction can also be aniso- 
tropic (Becker & Coppens, 1975) due to anisotropy of 
the imperfect mosaic structure of perfect microcrystalline 
domains. In X-ray diffraction, extinction attenuates the 
strong low-angle reflections more than the weak high- 
angle reflections, and uncorrected extinction, like 
uncorrected absorption, biases the mean-square displace- 

ment parameters toward values that are too small. In 
neutron diffraction, the effect is qualitatively similar but 
quantitatively different, because neutron scattering falls 
off more gradually with increasing scattering angle than 
does X-ray scattering. With both radiations, the scatter- 
ing is attenuated by thermal vibration in the same way, 
but neutron scattering lengths do not fall off with 
increasing scattering angle as X-ray scattering factors do. 
As a result, neutron extinction effects can persist to 
higher scattering angles. 

(4) Different thermal diffuse scattering effects 

In accordance with the principle of conservation of 
energy for the total scattering, as the intensity of elastic 
Bragg scattering decreases due to destructive interference 
of beams scattered by atoms displaced by thermal 
vibration, the intensity of inelastic thermal diffuse 
scattering (TDS) increases due to energy exchanges 
between the scattered beams and the lattice vibration 
modes. Overall, the Bragg intensities decrease and the 
TDS intensities increase, approximately exponentially 
with (sin 0)2/22. If the thermal attenuation of the Bragg 
scattering is anisotropic, then so is the TDS (Harada & 
Sakata, 1974; Sakata & Harada, 1976). Here we refer to 
anisotropic variation of the TDS intensity from lattice 
point to lattice point in reciprocal space, not to the 
inherently anisotropic distribution of TDS intensity about 
a given reciprocal lattice point. The latter arises because 
all crystals, even those of cubic symmetry, have 
anisotropic mechanical elasticity. 

Being inelastic, TDS increases the wavelength spread 
of the scattered beam. The TDS peak is, therefore, 
inherently broader than the Bragg peak, but both types of 
scattering peak at O(hkl). Thus, depending on the 
reflection integration limits, some part of the TDS is 
included in the integrated intensity measurements, and 

where 

Imeas = IBragg( 1 + 00 ,  

t~ = I TDs / l a r agg  

and 

0lis o = d0(sin 0 ) 2 / 2  2 - -  o~0d'2/4 or 01anis o = (1/4)hroth. 

Thus, uncorrected TDS, like uncorrected absorption or 
extinction, biases the mean-square displacement para- 
meters toward values that are too small. The necessary 
TDS corrections will be different in X-ray and neutron 
experiments due to the different intensity integration 
conditions, which include the different size of the 
specimen crystal, wavelength spread, beam divergence, 
aperture dimensions, scan mode and scan widths. In 
addition, if the speed of sound in the crystal exceeds the 
neutron speed, as can happen for very hard crystals, the 
neutron TDS peak will be flattened (Willis & Pryor, 
1975). 
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(5) Different multiple reflection effects 

Multiple reflection occurs when one or more second- 
ary reciprocal lattice points h m intersect the Ewald sphere 
simultaneously with the primary point of interest h 

Imeas(h) = lBragg(h )A(h )y (h ) [  l n t- (x (h)] 

q- ~ pmlBragg(hm) • 
m 

Although in principle the range of the coefficients is 
-1  <pro < + 1 ,  in practice usually [Pm] <0 .1 ,  and 
typically IPm[ -~ 0.01, so that the effect on fracas(h) is 
large only if/Bragg(hm) is large. The general tendency is 
to weaken Imeas for strong reflections (Pro < 0) and 
strengthen it for weak ones (Pro > 0). Thus, like 
uncorrected absorption, extinction or thermal diffuse 
scattering, multiple reflection tends to bias the mean- 
square displacement parameters toward values that are 
too small. In X-ray experiments, multiple reflection is 
sometimes detected or avoided by making measurements 
at several azimuthal settings around the diffraction 
vector; in neutron experiments, such multiple measure- 
ments are usually precluded by beam-time considera- 
tions. Computational corrections (Le Page & Gabe, 
1979; Coppens, 1978, and references therein) are seldom 
attempted. 

(6) Different systematic measuring errors 

Scan truncation errors may be quite common and, if 
uncorrected, they bias the mean-square displacement 
parameters toward values that are too large. These errors 
can arise from the long tails of a Lorentzian wavelength 
distribution (Denne, 1977), or from the spectral 
dispersion effect of a parallel-geometry monochromator, 
which causes reflection widths to vary as 
A w =  [ a + b l t a n  0 + b 2 ( t a n  0)2] 1/2 rather than as 
Am -- a + btan 0 (e.g. Blessing, 1987). An incident 
beam monochromator can also produce an inhomoge- 
neous, quasi-parallel (as opposed to divergent) beam that 
illuminates the specimen crystal nonuniformly. The 
resulting beam inhomogeneity errors resemble anisotro- 
pie absorption effects (Harkema, Dam, van Hummel & 
Reuvers, 1980). 

Quantitative comparisons 

Of the several effects just described, only the temperature 
effect is isotropic; the effects of absorption, extinction, 
thermal diffuse scattering, multiple reflection and 
measuring errors are, in. general, anisotropic. 

Experimental U ° / U ~  ratios are sometimes approxi- 
mately isotropic and constant, but more often the ratios 
are anisotropically variable. When the ratios are about 
constant, it is straightforward to evaluate an isotropic 
scale factor q defined by 

U 0 --qUiJ u, (1) 

6 0 and estimated as q = (UJ/UJ)a.ij, where the average is 
taken over the indices i and j as well as over the atoms a 
of the crystal chemical unit. In the high-temperature 
limit, this also gives an estimate of the ratio of 
experimental temperatures, T x / T  N ~_ q. 

To deal with anisotropically variable ratios, some 
workers have used anisotropic scale factors defined by 

U O" --qijUiJN, (2) 

_ nlO/iTiJ and estimated as qij--..~'-'x../'-'u),, Other workers have 
used separate qi = (U~/U~)a for the U i; values, and 
q = 1, q = (ql + qz + q3)/3, or q = (qi + qj)/2 for the 
U 0 values with i =/=j. Another possibility would be to 
scale the U 0 using (qiqj) 1/2,.. the geometric mean of qi 
values derived from U". The scaling would then 
correspond to a matrix multiplication 

q 0 0 
U x = qrUNq, where q = q2 0 . 

1/2 
0 q¢3 

Ratios of the U ij with i # j tend not to give reliable 
scaling factors, because the U o tend to have smaller 
magnitudes than the U", and small differences between 
the U o can produce extreme values for their ratios. In 
addition, while the U/; are related to the principal-axis 
amplitudes or eigenvalues of the mean-square displace- 
ment tensors, the U o are related to the principal-axis 
directions or eigenvectors, and the orientations of the 
root mean-square displacement ellipsoids are very 
sensitive to small changes in the U °, with i :/: j. 

For equal-atom, small-molecule, well ordered crystal 
structures of the type usually analyzed in joint X-ray and 
neutron studies of electron-density distributions, the 
anisotropic diffraction effects described above are not 
expected to vary widely from atom to atom; rather, they 
might be expected to add a roughly constant contribution 
to each atom's anisotropic mean-square displacement . 
parameters. This suggests ..evaluating the U ~ - U ~  
differences, rather than the U~ / U~ ratios, and anisotropic 
additive correction terms A U o defined by 

Ufl( = U O + A U  ij, (3) 

rather than anisotropic scaling factors. More generally, 
one can consider the sum of an isotropic temperature 
correction and anisotropic diffraction corrections 

U O = qU O + A U  O. (4) 

Temperature differences indicated by isotropic correc- 
tion factors q :/: 1 can be confirmed by differences in 
unit-cell dimensions, but physical causes of anisotropic 
correction terms A U  0 # 0 usually cannot be ascertained 
without additional or repeated diffraction measurements. 

The A U  0 are then simply operationally expedient 
numerical adjustments and they should be used with 
caution, because the underlying assumption that the A U o 
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should be constant from atom to atom might not hold in 
some cases. For example, for a heavy-atom structure, if 
some systematic error affects the high-angle more than 
the low-angle data, it will disproportionately affect the 
heavy-atom U ij values. If such a case is suspected, the 
heavy-atom U ij should not be used to evaluate the A U  ij. 

Calculat ion procedures 

Correction parameters q, qij and A U  ij are readily 
obtained by linear least-squares fit. The results corre- 
sponding to (1)-(4) are, respectively, 

, , i j ,  T i j ,  
q =  ~,wu2u,~/~,w(U~) 2, (5a) 

qq ~ T ~ q  , , q  q 2 
= w u i u b / ~ - ' ] ~ w ( U ~ ,  ) , (50) 

a a 

A u  ij = ( E wVg - E wVg) E w, (5c) 
a tl a 

and the normal equations solution 

/el A U  II 

A U  22 

A U  23 
- 1  

f E z ,  r i j x2  wt u ~, ~ E wU2 E wU~? . . .  E wU~ 3 
a a a 

E wU2 E w o . . .  o 
a a 

= E w U ~  ~ o E w  . . .  o 
a a 

E wU~ 3 o o . . .  E w 
a 

E .  1 r i j r r i j  
w u  X tJ  N 

E wU~,' 
t2 

E wU~ ~ 
X a (5d) 

E wV~ 3 
a 

In these equations, the symbol E a  denotes the single 
summation Y]~=I over the n atoms in the crystal 
chemical unit for fixed values of the indices i and j; 
otherwise, the symbol ~ denotes the triple summation 

n 3 3 Ea=lEi=lE:=i o v e r  the n atoms and the six 
(i < j = 1, 2, ~) mean-square displacement parameters 
of each atom. 

The least-squares fitting minimizes X 2 residuals 

X 2 "-- E W 4  2 "~ E ( A k / O ' )  2, (6) 

where k = 0, 1, 2, 3, 4, and 

A 0 = U~ - U~', (7a) 

A 1 = U 0 - UOq, (7b) 

A~_ = U~ - UO qij, (7c) 

za3 = u~ - u~  - zau  ij, (7d) 
A 4 = Uf l (  - U/~q- AU ij. (7e) 

The residual (7a) corresponds to the unadjusted mean- 
square displacement parameters, and (7b)-(7e) corre- 
spond to the results (5a)-(5d), respectively. Since we 
expect q ' ~  1 and A U  ij ~_ 0, we employ weights 
w = 1 / a  2 with 

o = = o(u  - = to (U ) + ( 8 )  

If the results are far from q _~ 1 and A U  ij ~_ O, they can 
be used to adjust a ( U ~ )  to a ( U  O) to obtain better weights 
for a recalculation. Useful agreement statistics are the 
weighted root mean-square errors of fit 

(A~)  1/2 = [Xzk/ E w] 1/2, (9) 

and the reduced X 2 values 

Z~ = [Xkz/(6n - mk)] 1/2, (10) 

where, for k = 0, 1, 2, 3 and 4, the numbers of variable 
parameters are mg -- 0, 1, 6, 6 and 7, respectively. 

Since A U  ij must apply to the unit-cell averages of U ij 
as well as to U ij of each atom, they should obey the 
symmetry restrictions given in Table 1. Conformity to 
these restrictions is a test of physical plausibility of the 
fitted A U  ij values. 

Sample calculations 

Illustrative calculations were performed using the uiJ's 
of the non-H atoms of t~-oxalic acid dihydrate from the 
IUCr project on comparison of structural parameters and 
electron-density maps (Coppens et al.,  1984). The project 
involved nine independent data sets, four X-ray and five 
neutron, measured at nominal temperatures ranging from 
75 to 115K.* 

Agreement statistics, defined by (9) and (10), are given 
in Table 2 for the X/X and N / N  as well as the X / N  inter- 
experiment comparisons. Among the 36 pairwise com- 
parisons, there was no case in which the one-parameter, 
isotropic q model (1) gave the best fit; in nine cases, the 
six-parameter qij. model (2) was best; in six cases, the six- 
parameter A U  '1 model (3) was best; and, in the 

*Parameters from the four high-angle X-ray refinements and the five 
neutron refinements, and the FORTRAN program used to calculate the 
least-squares correction parameters and agreement statistics have been 
deposited with the IUCr (Reference: CR0481). Copies may be obtained 
through The Managing Editor, Internatioml Union of Crystallography, 
5 Abbey Square, Chester CH 1 2HU, England. 
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Table 1. Symmetry restrictions on A U 0 correction terms 

Triclinic None 
Monoclinic AU ~2 = AU 23 = 0 
Orthorhombic AU 12 = AU 23 = AU 13 = 0 
Tetragonal AU n = AU 22, AU 12 = AU 23 = AU 13 = 0 
Rhombohedral None 
Hexagonal AU n = AU 22, AU 12 = A U n / 2 ,  AU 23 = AU ]3 = 0 
Cubic AU n : AU 22 : AU 33, AU 12 : AU 23 : AU 13 : 0 

Table 2. Statistics* o f  inter-experiment fitting o f  U 0 o f  the 
non-H atoms o f  a-oxalic acid dihydrate (Coppens 

et al., 1984) 

Expt.  

Pair  
X 1 / N I  

N2 
N3 
N4 

remaining 21 cases, the seven-parameter q + A U  ij model N5 
X 2/N 1 

(4) was best. Failure of the isotropic q model to give a N2 
good fit indicates that experimental temperature differ- N3 
ences alone do not account for the U ij differences, s4 s5 
Among the nine cases in which the anisotropic qij model X3/ml 
gave the best fit, there were only three - namely, X 1/X 2, N2 
X 1 /X3  and X 1 / X 4  - in which it was significantly better m3 s4 
than the A U  ij o r  q + A U  ij model. The questionable s5 
reliability of qij scaling factors with i # j  was illustrated xa/sl  

s2 
by the N 3 / N 4  case: Although the qij model gave the best s3 
fit, q23 was, unreasonably, more than twice the qii values. N4 

N5 In general, the A U  ij from (3) or (4) probably provide Xl/X2 
more reliable anisotropic corrections than qij from (2), x3 
even if (2) gives a slightly better fit. The q and A U  ij x4 

X 2/X 3 values from (4) are listed in Table 3, and the q values are x4 
compared with the reported experimental temperatures in x 3/x4 
Table 4. S l/S2 

N3 
Comparisons with experiment X4 gave values of Z 0 N4 

(Table 2) and q (Table 3) very different from unity. This N5 
is largely because Dirac-Slater form factors were used in s2/s3 

N4 
the X4 ref'mement, while relativistic Hartree-Fock form s5 
factors were used in the other X refinements. The Dirac- N3/N4 

N5 Slater form factors represent more compact atoms, and s4/s5 
therefore should - other things being equal - produce 
larger U ij values (Coppens et al., 1984). The effect was Score 
particularly pronounced for the U 22 values, which 
correspond to atomic displacements perpendicular to 
the plane of the oxalic acid molecule. The Z 0 and q 
values were also far from unity for comparisons with 
experiment N3; this is due largely to its lower 
temperature of 75 K compared with 100-115 K for the 
other experiments. The common occurrence of Zt < 1 where 

for comparisons with experiment N5 suggest that its 
a ( U  ij) values, which were twice or more as large as those 
of the other N experiments, were overestimated. The 
large values of A U  33 for comparisons with experiment 
X1 indicate that its U 33 w e r e  systematically over- 
estimated, perhaps due to correlation with the anisotropic 
extinction correction applied in the X3 ref'mement. The 
reported lower temperature of 75 K for experiment N3 is 
borne out by the fitted q values (Table 4), but the 
reported higher temperature of 115 K for experiment N5 
is not. 

Overall, the fitting procedure was able to reduce the 
'J by factors of ca 2-20. root mean-square U differences 

2 ij The residual differences (A U )1/2_~ 0.0001-0.0005 A 
represent some 1-5% of (Uiso) _~ 0.012A 2, where (Uiso) 
is the average of the U ii values from the nine 
experiments. These results show that the fitting proce- 

(a~)  ,/~ (/1~)'/~ 

z0 z, z2 z3 z, (A 2) (A 2) 
7.75 5.09 1.38 1.46 1.45 0.00024 0.00024 
5.40 3.70 1.39 i .37 1.37 0.00028 0.00027 
9.65 3.66 1.64 2.60 1.58 0.00036 
7.00 4.02 3.40 2.55 2.56 0.00044 0.00043 
2.69 2.56 0.55 0.63 0.65 0.00022 0.00025 
7.22 2.18 1.19 1.67 0.78 0.00007 
3.53 1.69 1.13 1.23 0.84 0.00011 

10.39 1.84 1.44 3.69 1.17 0.00019 
10.04 8.90 6.00 5.01 5 . 1 1  0.00043 0.00043 
0.68 0.68 0.27 0.26 0.18 0.00006 

10.52 3.35 1.61 2.04 1.13 0.00011 
6.10 2.76 1.30 1.58 1.02 0.00015 

12.50 2.06 1.54 3.71 1.28 0.00022 
12.44 10.35 5.69 4.55 4.67 0.00046 0.00046 

1.54 0.86 0.36 0.45 0.29 0.00010 
20.89 3.73 1.25 5.14 0.90 0.00012 
15.84 2.90 !.27 4.14 1 .21  0.00021 
19.49 2.05 1.65 6.17 1.38 0.00028 
20.95 8.87 5.45 5.85 4.98 0.00068 

6.72 1.68 0.41 1.93 0.45 0.00016 0.00017 
5.54 5.30 1.04 1.45 ! .43 0.00018 0.00023 
5.96 6.07 0.98 1.61 1 . 4 8  0.00018 0.00026 

11.75 5.10 0.96 3.68 1 .41  0.00019 0.00027 
4.28 2.28 1.08 !. 18 1.0(~_ 0.00009 

17.29 ! .90 0.78 4.40 0.75 0.00010 
13.57 1.71 0.90 3.67 0.97 0.00013 0.00014 
2.23 1.66 0.95 0.66 0.67 0.00010 0.00009 
6.39 1.77 1.13 2.73 1.09 0.00018 
6.18 6.20 4.32 4.48 4.25 0.00040 
1.91 0.62 0.30 0.27 0.18 0.00006 
6.52 1.48 1.10 2.30 1 . 1 3  0.00023 0.00023 
4.35 4.36 3.50 3.01 2.83 0.00040 
1.41 0.93 0.33 0.34 0.28 0.00010 
6.77 3.01 1.83 3.66 2.07 0.00032 0.00035 
4.62 0.90 0.43 1.32 0.42 0.00016 
2.71 2.07 1.25 1.15 i.18 0.00041 0.00041 

0 9 6 21 

*The tabulated value o f  (/1~)]/2 corresponds to the m i n i m u m  value o f  

Z, ,  which is underscored.  For  the cases in which Z 4 f rom the fit to (4) 
was not the min imum,  (/12)]/2 is also tabulated. The tabulated quanti t ies 
are def ined by 

Z,  = [ x ~ l ( 6 n -  m,)] ]/2 a n d  < /1,2 > ] / 2 =  [X~/~-~w] '/2 

x, ~ = E wA~ = E ( / 1 , / o ) ; ;  

k = 0 , 1 , 2 , 3 , 4 ;  

A 0 = U ~ - U ~  , rn 0 = 0 ;  

A I = U ~ - U ~ q  , m ] = l ;  

A 2 = U S - U~q 0 , m 2 = 6; 

/I 3 = U~ - U O - / 1 U  ij , m 3 = 6; 

/14 = U~ - U~q - / 1 U  0 , m4 = 7; 

w = 1 / ~ ;  o- = 0-(,4) = o-(U.~ - U,~) = [~(U,~)  + ~(U,~) ]  '/2. 

dure can provide statistically sound, and physically 
sensible, corrections for adjusting neutron U 0 values for 
adoption as fixed parameters in X-ray analyses of 
electron-density distributions. 
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Table 3. Inter-experiment correction parameters* q 
(dimensionless) and AU ij (,~x 105) from the fit  to (4) 

Expt. Pair q A U  II A U  22 A U  33 A U  12 A U  13 A U  13 

XI/N1 1.04 58 157 323 - 2 4  19 - 7  
N2 1.03 76 81 265 - 3 4  - 4  - 2 3  
N3 1.30 119 89 337 - 2 7  54 - 1 6  
N4 0.95 158 324 258 -21  67 2 
N5 1.00 --48 56 304 - 2 6  -31  - 6  

X2/N l !.08 15 96 21 - 1 7  21 - 3  
N2 1.07 33 15 - 3 9  - 2 6  - 3  - 1 8  
N3 1.36 68 12 23 - 2 2  56 - 1 4  
N4 0.96 143 299 - 2 3  - 6  79 8 
N5 1.04 - 9 8  - 1 4  0 - 1 9  - 3 2  - 2  

X3/N1 l . l l  71 187 14 - 1 9  17 - 6  
N2 1.11 86 97 - 4 9  - 2 9  - 7  - 2 3  
N3 1.40 128 107 19 - 2 2  54 - 1 6  
N4 0.99 206 403 - 2 5  - 5  80 3 
N5 1.07 - 4 6  70 - 7  - 2 0  - 3 6  - 6  

X4/N 1 1.42 44 330 48 - 1 0  14 0 
N2 1.41 70 228 - 2 8  -21  - 1 5  - 2 0  
N3 1.82 97 194 38 - 2 0  56 - 1 3  
N4 1.25 224 622 4 10 92 15 
N5 1.38 -120  162 12 - 1 4  - 5 9  2 

X I/X2 0.96 40 62 303 - 7  - 2  - 5  
X3 0.94 - 1 0  - 1 9  312 - 5  2 -1  
X4 0.73 26 - 8 5  290 - 1 6  9 - 8  

X2/X3 0.97 - 5 0  -81 13 2 6 3 
X4 0.76 - 18 -156  - 1 6  - 1 0  11 - 3  

X3/X4 0.78 42 - 6 3  - 2 0  -11  8 - 7  
NI/N2 1.00 17 - 7 6  - 5 5  - 8  - 2 2  - 1 4  

N3 !.27 47 - 7 9  0 - 4  32 - 1 0  
N4 0.91 108 172 - 4 6  9 51 10 
N5 0.96 -105  - 103 - 1 9  - 2  - 5 0  1 

N2/N3 1.27 36 5 59 5 55 5 
N4 0.91 96 256 16 19 75 26 
N5 0.96 -114  - 1 7  41 8 - 2 6  15 

N3/N4 0.75 18 159 - 6 7  4 7 15 
N5 0.75 -114  - 1 2  - 7  4 - 6 3  8 

N4/N5 0.99 -160  -206  78 4 - 8 9  -11  

*Since the crystal structure is monoclinic, the condition 
to within A U  1 2 :  A U  23 = 0  should hold, and generally it does, 

,r(~a) = [a2(ux ) + a2(uN)] ~/2. 

Table 4. Reported (Coppens et al., 1984) experimental 
temperatures (K) and q values (dimensionless)from the 

fit to (4) 

Expt. 
T 

XI 100 
X2 100 
X3 103 
X4 100 
NI 100 
N2 100 
N3 75 
N4 100 
N5 115 

X1 X2 X3 X4 N1 N2 N3 N4 N5 

100 100 103 100 100 100 75 100 115 
1.00 0.96 0.94 0.73 1.04 1 . 0 3  1.30 0.95 1.00 

i .00 0.97 0.76 1.08 1.07 1.36 0.96 1.04 
1.00 0.78 1.11 1.1 i 1.40 0.99 1.07 

1.00 i .42 1.41 1.82 1.25 1.38 
1.00 ! .00 1.27 0.91 0.96 

1.00 1.27 0.91 0.96 
1.00 0.75 0.75 

1.00 0.99 
1.00 

Adjusted U~/'s for H atoms 

It is well known that neutron diffraction gives mean 
positions and mean-square displacements for H atoms 
that are much more accurate than those from X-ray 
diffraction. This is true even if the neutron data are of 
only moderate precision and relatively low resolution - 
say (a(lFl))/(lF[) ~_ 0.05 or more, and 
(sin 0max)/,~ --~ 0.5 ~ - !  or less - and the X-ray data are 
high-precision, high-resolution data measured for an 

electron-density analysis - typically 
(a(IFl))/(IFI) ~_0.02 or less, and (sin0max)2 ~ Ilk -1 
or more. This being so, the most valuable application of 
the corrections calculated from the X-ray and neutron 
UiJ's of the non-H atoms of a crystal might be adjustment 
of the neutron uiJ's of the H atoms. 

If the zlU ij model (3) gives a good fit for the non-H 
atoms, then application to the H atoms is straightforward, 
and 

UO(H) = uiJu(H)+ zluiJ(non-H) ( l l a )  

is a reasonable approximation. If, however, the q + AU ij 
model (4) gives a q value significantly different from 
unity, thus indicating significantly different experimental 
temperatures, then the application is more complicated. 
This is because a large part of the mean-square 
displacement of H atoms is due to their zero-point 
motions in bond-stretching and bond-bending internal 
vibration modes, which, on account of the small mass of 
H atoms, have amplitudes comparable to those of lattice 
vibration modes. Since the zero-point vibrations are 
temperature-independent, the internal vibration ampli- 
tudes do not scale with temperature as do the lattice 
vibration amplitudes. A proper correction based on (4) 
would then be 

U~(H) = q[U~(H) - U0/(H)] + Uj(H) + AU ij, ( l lb)  

where U0/(H) represent mean-square internal vibration 
amplitudes transformed from local Cartesian axes at each 
H atom to the crystallographic axes. Internal vibration 
amplitudes for C - - H ,  N - - H  and O - - H  H atoms from a 
sampling of spectroscopic and neutron diffraction studies 
are compiled in Table 5. 

Finally, we note very recent studies by Chen & Craven 
(1995) showing that differences between X-ray and 
neutron UiJ's for non-H atoms can be fitted by a 
pseudoatom model for the electronic charge-density 
distribution in the X-ray refinement. The dimensionless 
radial scaling parameters K, which are intended to model 
contraction or expansion of bound pseudoatoms as 
compared with free atoms (Coppens, Guru Row, Leung, 
Stevens, Becker & Yang, 1979"), are most effective in 
this regard. X-ray UiJ's change significantly according to 
whether K's are set to unity, set to some standard value, 
or are unconstrained; joint refinement of U ij and K 
parameters can significantly improve agreement between 
X-ray and neutron uiJ's. These observations raise the 
question: To what extent do the K's describe atomic 
contractions or expansions, and to what extent are they 
biased by effects of  thermal vibration, absorption, 

* In this paper, r in equation (6b) should be replaced by Kot, and the 
references to x = 1.4 for H atoms in the discussion on pp. 65 -67  should 
refer to x(  = 1 .4bohr  -I,  where K( is the exponential coefficient in the 
radial wavefunction for a spherically contracted H atom. This 
corresponds to an exponential coefficient tea = 2: r (  = 2 . 8 b o h r  -] in 
the radial density function. 
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Table 5. Mean-square amplitudes (~2)for internal vibrations of H atoms from spectroscopic and neutron diffraction 
studies of C ~ H, N - - H  and O - - H  bond stretching and bond bending 

C w H  
Methylene chloride CH2CI 2 
Cyclobutane C4H 8 
Benzene C6H 6 
Formamide HCONH 2 
Acetamide CH3CONH 2 
Monofluoroacetamide FCH2CONH 2 

NOH 
II 

Formamide oxime HCNH 2 
O 
II 

N,N'-Diformohydrazine HCNH--NH~H 

~oH 
Glyoxime HC--CH 

~OH 
1,2,4-Triazole H ~  

H H 

g-Aminobutyric acid NH2(CH2)3CO2H 

N - - H  
Formamide 
Acetamide 
Monofluoroacetamide 
N-Methylacetamide CH3CONHCH 3 
Urea H 2 NCONH 2 
Formamide oxime 
N,N'- Diformohydrazine 
1,2,4-Triazine 

O - - H  
Water 

Formamide oxime 
Glyoxime 

Stretch Bend Ref. 
In-plane Out-of-plane 

0.00578 0.01369 0.01369 (a) 
0.0069 0.0289 0.0139 (b) 
0.0059 0.0135 0.0225 (b) 
0.0057 0.0115 (c) 
0.0058 0.0144 (d) 
0.0055 0.0213 0.0142 (e) 

0.0046 0.0132 

0.0053 0.0121 (g) 

0.0064 0.0128 0.0044 (h) 

0.0067 0.0125 0.0040 (i) 

0.0063 0.023 0.014 (/') 

0.005 0.015 (c) 
0.0058 0.0110 (d) 
0.0058 0.0130 (e) 
0.005 0.015 0.027 (k) 
0.0053 0.014 0.027 (/) 
0.0058 0.0125 (]) 
0.0055 0.0110 (g) 
0.0070 0.0075 (i) 

av. (u~) - (u 2) in 0.0055 0.025 0.020 (m) 
crystalline hydrates 

0.0048 0.0106 0.0081 (1') 
0.0048 0.0104 0.0104 (h) 

OH 
I 

Erythritol HOCH2CHCHCH2OH 0.0058 0.0164 0.0130 (n) 
/ 

OH 

References: (a) Ellison, Johnson & Levy (1971); (b) Johnson (1970); (c) Eisenstein (1979); (d) Jeffrey, Ruble, McMullan, DeFrees, Binkley & 
Pople (1980); (e) Jeffrey, Ruble, McMullan, DeFrees & Pople (198 l a); (f) Jeffrey, Ruble, McMullan, DeFrees & Pople (1981 b); (g) Jeffrey, Ruble, 
McMullan, DeFrees & Pople (1982); (h) Jeffrey, Ruble & Pople (1982); (i) Jeffrey, Ruble & Yates (1983); (13 Craven & Swaminathan (1994); 
(k) Hirshfeld & Hope (1980); (/) Ishii & Scheringer (1979); (m) Eriksson & Hermansson (1983); (n) Ceccarelli, Jeffrey & McMullan (1980). 

extinction, multiple reflection, thermal diffuse scattering 
or systematic measuring errors, as described above? 

P r o f e s s o r  P h i l i p  C o p p e n s  k i n d l y  s u p p l i e d  the  U iJ 
p a r a m e t e r s  f r o m  the  I U C r  p r o j e c t ,  w h i c h  h a d  n o t  b e e n  
p u b l i s h e d  w i t h  the  s u m m a r y  p r o j e c t  r epor t .  T h e  a u t h o r  is 
a l so  g r a t e f u l  fo r  h e l p f u l  c o m m e n t s  f r o m  the  r e f e r e e s  a n d  
f r o m  P r o f e s s o r  B r y a n  C r a v e n ,  a n d  fo r  s u p p o r t  f r o m  
U S D H H S  P H S  N I H  g r a n t s  G M 3 4 0 7 3  a n d  D K 1 9 8 5 6 .  
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Abstract 

The molecular structure and crystal packing of a 
homologous series of 4-n-alkyl-N-(4-cyanophenyl)piper- 
idines (I), where alkyl equals butyl, pentyl, hexyl, heptyl 
and octyl (n = 4-8), have been analyzed. Although the 
conformations of the (cyanophenyl)piperidyl unit remain 
fairly constant throughout, the crystal packing depends 
acutely upon alkyl chain length with one, two or four 
molecules comprising the asymmetric unit: for (I) 
(n = 4), monoclinic (P21); for (I) (n_ = 5), monoclinic 
(P21/c); for (I) (n = 6), triclinic (P1); for (I) (n = 7), 
triclinic (P1); for (I) (n = 8), monoclinic (P21/c). The 
piperidyl rings are in a chair conformation. Unit-cell and 
other crystal data are presented. 

Introduction 

It is known that trans-l-n-alkyl-4-(4-cyanophenyl)cyclo- 
hexanes form monotropic smectic and enantiotropic 
nematic mesophases between the temperatures of the 
crystal and liquid phases (Eidenschink, Erdman, Krause 
& Pohl, 1977). To determine the influence of the 
isoelectronic substitution of C - - H  by nitrogen at the 
juncture between the phenyl and cyclohexyl rings, we 
have synthesized a series of 4-n-alkyl-N-(4-cyano- 
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phenyl)piperidines, (I) (n = 4-8). Surprisingly, only (I) 
(n -- 6) is mesogenic and becomes (monotropic) nematic 
when cooled from the liquid state. In other work, we 
have shown that mesomorphism can be induced by 
mixing homologues of (I) (Sheikh-Ali & Weiss, 1991, 
1994). In order to explore possible links between the lack 
of liquid crystallinity in (I) and modes of packing in the 
solid state, the crystal structures have been analyzed and 
compared with each other and with their cyclohexyl 
analogues. 

Experimental 

Table 1 lists the experimental conditions and the final 
refinement parameters for (I) (n = 4-8). Samples of (I) 
(Sheikh-Ali & Weiss 1991, 1994) were recrystallized 
from hexane and affLxed to a glass fiber by epoxy resin 
(sans hardener). Data were collected on a Siemens 
P4/RA diffractometer with an LT-2 low-temperature 
device. No phase transitions were detected by differential 
scanning calorimetry between room temperature and 
203 K. The phase problem was solved, in some cases 
with difficulty, by standard direct methods, or integrated 
Patterson search methods (PATSEE; Sheldrick, 1985). 
The structures were developed by difference-Fourier 
calculations interspersed with cycles of full-matrix least- 
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